MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsum Structured version   Visualization version   GIF version

Theorem zsum 15666
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
zsum.1 𝑍 = (ℤ𝑀)
zsum.2 (𝜑𝑀 ∈ ℤ)
zsum.3 (𝜑𝐴𝑍)
zsum.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
zsum.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
zsum (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem zsum
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2816 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛𝐴𝑖𝐴))
2 csbeq1 3896 . . . . . . . . . . . 12 (𝑛 = 𝑖𝑛 / 𝑘𝐵 = 𝑖 / 𝑘𝐵)
31, 2ifbieq1d 4552 . . . . . . . . . . 11 (𝑛 = 𝑖 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
43cbvmptv 5261 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑖 ∈ ℤ ↦ if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
5 simpll 765 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝜑)
6 zsum.5 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
76ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8 nfcsb1v 3918 . . . . . . . . . . . . . 14 𝑘𝑖 / 𝑘𝐵
98nfel1 2919 . . . . . . . . . . . . 13 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
10 csbeq1a 3907 . . . . . . . . . . . . . 14 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
1110eleq1d 2818 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
129, 11rspc 3600 . . . . . . . . . . . 12 (𝑖𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑖 / 𝑘𝐵 ∈ ℂ))
137, 12syl5 34 . . . . . . . . . . 11 (𝑖𝐴 → (𝜑𝑖 / 𝑘𝐵 ∈ ℂ))
145, 13mpan9 507 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
15 simplr 767 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑚 ∈ ℤ)
16 zsum.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1716ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑀 ∈ ℤ)
18 simpr 485 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑚))
19 zsum.3 . . . . . . . . . . . 12 (𝜑𝐴𝑍)
20 zsum.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2119, 20sseqtrdi 4032 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (ℤ𝑀))
2221ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑀))
234, 14, 15, 17, 18, 22sumrb 15661 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2423biimpd 228 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2524expimpd 454 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2625rexlimdva 3155 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2719ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴𝑍)
28 uzssz 12845 . . . . . . . . . . . . . . . 16 (ℤ𝑀) ⊆ ℤ
2920, 28eqsstri 4016 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℤ
30 zssre 12567 . . . . . . . . . . . . . . 15 ℤ ⊆ ℝ
3129, 30sstri 3991 . . . . . . . . . . . . . 14 𝑍 ⊆ ℝ
32 ltso 11296 . . . . . . . . . . . . . 14 < Or ℝ
33 soss 5608 . . . . . . . . . . . . . 14 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
3431, 32, 33mp2 9 . . . . . . . . . . . . 13 < Or 𝑍
35 soss 5608 . . . . . . . . . . . . 13 (𝐴𝑍 → ( < Or 𝑍 → < Or 𝐴))
3627, 34, 35mpisyl 21 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → < Or 𝐴)
37 fzfi 13939 . . . . . . . . . . . . 13 (1...𝑚) ∈ Fin
38 ovex 7444 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ V
3938f1oen 8971 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
4039adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
4140ensymd 9003 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ≈ (1...𝑚))
42 enfii 9191 . . . . . . . . . . . . 13 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
4337, 41, 42sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ∈ Fin)
44 fz1iso 14425 . . . . . . . . . . . 12 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4536, 43, 44syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
46 simpll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
4746, 13mpan9 507 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
48 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
4948csbeq1d 3897 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
50 csbcow 3908 . . . . . . . . . . . . . . . 16 (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵
5149, 50eqtr4di 2790 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
5251cbvmptv 5261 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
53 eqid 2732 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵)
54 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
5516ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ)
5621ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑀))
57 simprl 769 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
58 simprr 771 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
594, 47, 52, 53, 54, 55, 56, 57, 58summolem2a 15663 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
6059expr 457 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6160exlimdv 1936 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6245, 61mpd 15 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
63 breq2 5152 . . . . . . . . . 10 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6462, 63syl5ibrcom 246 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6564expimpd 454 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6665exlimdv 1936 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6766rexlimdva 3155 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6826, 67jaod 857 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6916adantr 481 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝑀 ∈ ℤ)
7021adantr 481 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝐴 ⊆ (ℤ𝑀))
71 simpr 485 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
72 fveq2 6891 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
7372sseq2d 4014 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑀)))
74 seqeq1 13971 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))))
7574breq1d 5158 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7673, 75anbi12d 631 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)))
7776rspcev 3612 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝐴 ⊆ (ℤ𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7869, 70, 71, 77syl12anc 835 . . . . . . 7 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7978orcd 871 . . . . . 6 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
8079ex 413 . . . . 5 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8168, 80impbid 211 . . . 4 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
82 simpr 485 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
8328, 82sselid 3980 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℤ)
8482, 20eleqtrrdi 2844 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗𝑍)
85 zsum.4 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
8685ralrimiva 3146 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
8786adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
88 nfcsb1v 3918 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
8988nfeq2 2920 . . . . . . . . . . 11 𝑘(𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
90 fveq2 6891 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
91 csbeq1a 3907 . . . . . . . . . . . 12 (𝑘 = 𝑗 → if(𝑘𝐴, 𝐵, 0) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
9290, 91eqeq12d 2748 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) ↔ (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
9389, 92rspc 3600 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
9484, 87, 93sylc 65 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
95 fvex 6904 . . . . . . . . 9 (𝐹𝑗) ∈ V
9694, 95eqeltrrdi 2842 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ V)
97 nfcv 2903 . . . . . . . . . . 11 𝑛if(𝑘𝐴, 𝐵, 0)
98 nfv 1917 . . . . . . . . . . . 12 𝑘 𝑛𝐴
99 nfcsb1v 3918 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝐵
100 nfcv 2903 . . . . . . . . . . . 12 𝑘0
10198, 99, 100nfif 4558 . . . . . . . . . . 11 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
102 eleq1w 2816 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
103 csbeq1a 3907 . . . . . . . . . . . 12 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
104102, 103ifbieq1d 4552 . . . . . . . . . . 11 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
10597, 101, 104cbvmpt 5259 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
106105eqcomi 2741 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
107106fvmpts 7001 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ V) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
10883, 96, 107syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
109108, 94eqtr4d 2775 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = (𝐹𝑗))
11016, 109seqfeq 13995 . . . . 5 (𝜑 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , 𝐹))
111110breq1d 5158 . . . 4 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
11281, 111bitrd 278 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
113112iotabidv 6527 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥))
114 df-sum 15635 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
115 df-fv 6551 . 2 ( ⇝ ‘seq𝑀( + , 𝐹)) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥)
116113, 114, 1153eqtr4g 2797 1 (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  csb 3893  wss 3948  ifcif 4528   class class class wbr 5148  cmpt 5231   Or wor 5587  cio 6493  1-1-ontowf1o 6542  cfv 6543   Isom wiso 6544  (class class class)co 7411  cen 8938  Fincfn 8941  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11250  cn 12214  cz 12560  cuz 12824  ...cfz 13486  seqcseq 13968  chash 14292  cli 15430  Σcsu 15634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-fzo 13630  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635
This theorem is referenced by:  isum  15667  sum0  15669  sumz  15670  sumss  15672  fsumsers  15676
  Copyright terms: Public domain W3C validator