Step | Hyp | Ref
| Expression |
1 | | eleq1w 2822 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑖 → (𝑛 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) |
2 | | csbeq1 3839 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑖 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
3 | 1, 2 | ifbieq1d 4488 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 0)) |
4 | 3 | cbvmptv 5191 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑖 ∈ ℤ ↦ if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 0)) |
5 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝜑) |
6 | | zsum.5 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
7 | 6 | ralrimiva 3109 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
8 | | nfcsb1v 3861 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 |
9 | 8 | nfel1 2924 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ |
10 | | csbeq1a 3850 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
11 | 10 | eleq1d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
12 | 9, 11 | rspc 3547 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
13 | 7, 12 | syl5 34 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ 𝐴 → (𝜑 → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
14 | 5, 13 | mpan9 506 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
15 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑚 ∈ ℤ) |
16 | | zsum.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
17 | 16 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑀 ∈ ℤ) |
18 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
19 | | zsum.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
20 | | zsum.1 |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) |
21 | 19, 20 | sseqtrdi 3975 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
22 | 21 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
23 | 4, 14, 15, 17, 18, 22 | sumrb 15406 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
24 | 23 | biimpd 228 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
25 | 24 | expimpd 453 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
26 | 25 | rexlimdva 3214 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
27 | 19 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ⊆ 𝑍) |
28 | | uzssz 12585 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
29 | 20, 28 | eqsstri 3959 |
. . . . . . . . . . . . . . 15
⊢ 𝑍 ⊆
ℤ |
30 | | zssre 12309 |
. . . . . . . . . . . . . . 15
⊢ ℤ
⊆ ℝ |
31 | 29, 30 | sstri 3934 |
. . . . . . . . . . . . . 14
⊢ 𝑍 ⊆
ℝ |
32 | | ltso 11039 |
. . . . . . . . . . . . . 14
⊢ < Or
ℝ |
33 | | soss 5522 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ⊆ ℝ → ( <
Or ℝ → < Or 𝑍)) |
34 | 31, 32, 33 | mp2 9 |
. . . . . . . . . . . . 13
⊢ < Or
𝑍 |
35 | | soss 5522 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑍 → ( < Or 𝑍 → < Or 𝐴)) |
36 | 27, 34, 35 | mpisyl 21 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → < Or 𝐴) |
37 | | fzfi 13673 |
. . . . . . . . . . . . 13
⊢
(1...𝑚) ∈
Fin |
38 | | ovex 7301 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑚) ∈
V |
39 | 38 | f1oen 8732 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → (1...𝑚) ≈ 𝐴) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) |
41 | 40 | ensymd 8762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ≈ (1...𝑚)) |
42 | | enfii 8937 |
. . . . . . . . . . . . 13
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) |
43 | 37, 41, 42 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ∈ Fin) |
44 | | fz1iso 14157 |
. . . . . . . . . . . 12
⊢ (( <
Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
45 | 36, 43, 44 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
46 | | simpll 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑) |
47 | 46, 13 | mpan9 506 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
48 | | fveq2 6768 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) |
49 | 48 | csbeq1d 3840 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
50 | | csbcow 3851 |
. . . . . . . . . . . . . . . 16
⊢
⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 |
51 | 49, 50 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) |
52 | 51 | cbvmptv 5191 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) |
53 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ ↦
⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) |
54 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) |
55 | 16 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ) |
56 | 21 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
57 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
58 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
59 | 4, 47, 52, 53, 54, 55, 56, 57, 58 | summolem2a 15408 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
60 | 59 | expr 456 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
61 | 60 | exlimdv 1939 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
62 | 45, 61 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
63 | | breq2 5082 |
. . . . . . . . . 10
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
64 | 62, 63 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
65 | 64 | expimpd 453 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
66 | 65 | exlimdv 1939 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
67 | 66 | rexlimdva 3214 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
68 | 26, 67 | jaod 855 |
. . . . 5
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
69 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → 𝑀 ∈ ℤ) |
70 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
71 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
72 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑀)) |
73 | 72 | sseq2d 3957 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑀))) |
74 | | seqeq1 13705 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)))) |
75 | 74 | breq1d 5088 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
76 | 73, 75 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥))) |
77 | 76 | rspcev 3560 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (𝐴 ⊆
(ℤ≥‘𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
78 | 69, 70, 71, 77 | syl12anc 833 |
. . . . . . 7
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
79 | 78 | orcd 869 |
. . . . . 6
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
80 | 79 | ex 412 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))))) |
81 | 68, 80 | impbid 211 |
. . . 4
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
82 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
83 | 28, 82 | sselid 3923 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ ℤ) |
84 | 82, 20 | eleqtrrdi 2851 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ 𝑍) |
85 | | zsum.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
86 | 85 | ralrimiva 3109 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
87 | 86 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
88 | | nfcsb1v 3861 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) |
89 | 88 | nfeq2 2925 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) |
90 | | fveq2 6768 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
91 | | csbeq1a 3850 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → if(𝑘 ∈ 𝐴, 𝐵, 0) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
92 | 90, 91 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0) ↔ (𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0))) |
93 | 89, 92 | rspc 3547 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0))) |
94 | 84, 87, 93 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
95 | | fvex 6781 |
. . . . . . . . 9
⊢ (𝐹‘𝑗) ∈ V |
96 | 94, 95 | eqeltrrdi 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ V) |
97 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛if(𝑘 ∈ 𝐴, 𝐵, 0) |
98 | | nfv 1920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘 𝑛 ∈ 𝐴 |
99 | | nfcsb1v 3861 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
100 | | nfcv 2908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘0 |
101 | 98, 99, 100 | nfif 4494 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
102 | | eleq1w 2822 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) |
103 | | csbeq1a 3850 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
104 | 102, 103 | ifbieq1d 4488 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
105 | 97, 101, 104 | cbvmpt 5189 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
106 | 105 | eqcomi 2748 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
107 | 106 | fvmpts 6872 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧
⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ V) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
108 | 83, 96, 107 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
109 | 108, 94 | eqtr4d 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑗) = (𝐹‘𝑗)) |
110 | 16, 109 | seqfeq 13729 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑀( + , 𝐹)) |
111 | 110 | breq1d 5088 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , 𝐹) ⇝ 𝑥)) |
112 | 81, 111 | bitrd 278 |
. . 3
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ seq𝑀( + , 𝐹) ⇝ 𝑥)) |
113 | 112 | iotabidv 6414 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥)) |
114 | | df-sum 15379 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
115 | | df-fv 6438 |
. 2
⊢ ( ⇝
‘seq𝑀( + , 𝐹)) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥) |
116 | 113, 114,
115 | 3eqtr4g 2804 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |