MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsum Structured version   Visualization version   GIF version

Theorem zsum 15067
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
zsum.1 𝑍 = (ℤ𝑀)
zsum.2 (𝜑𝑀 ∈ ℤ)
zsum.3 (𝜑𝐴𝑍)
zsum.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
zsum.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
zsum (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem zsum
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2872 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛𝐴𝑖𝐴))
2 csbeq1 3831 . . . . . . . . . . . 12 (𝑛 = 𝑖𝑛 / 𝑘𝐵 = 𝑖 / 𝑘𝐵)
31, 2ifbieq1d 4448 . . . . . . . . . . 11 (𝑛 = 𝑖 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
43cbvmptv 5133 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑖 ∈ ℤ ↦ if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
5 simpll 766 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝜑)
6 zsum.5 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
76ralrimiva 3149 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8 nfcsb1v 3852 . . . . . . . . . . . . . 14 𝑘𝑖 / 𝑘𝐵
98nfel1 2971 . . . . . . . . . . . . 13 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
10 csbeq1a 3842 . . . . . . . . . . . . . 14 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
1110eleq1d 2874 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
129, 11rspc 3559 . . . . . . . . . . . 12 (𝑖𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑖 / 𝑘𝐵 ∈ ℂ))
137, 12syl5 34 . . . . . . . . . . 11 (𝑖𝐴 → (𝜑𝑖 / 𝑘𝐵 ∈ ℂ))
145, 13mpan9 510 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
15 simplr 768 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑚 ∈ ℤ)
16 zsum.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1716ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑀 ∈ ℤ)
18 simpr 488 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑚))
19 zsum.3 . . . . . . . . . . . 12 (𝜑𝐴𝑍)
20 zsum.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2119, 20sseqtrdi 3965 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (ℤ𝑀))
2221ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑀))
234, 14, 15, 17, 18, 22sumrb 15062 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2423biimpd 232 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2524expimpd 457 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2625rexlimdva 3243 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2719ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴𝑍)
28 uzssz 12252 . . . . . . . . . . . . . . . 16 (ℤ𝑀) ⊆ ℤ
2920, 28eqsstri 3949 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℤ
30 zssre 11976 . . . . . . . . . . . . . . 15 ℤ ⊆ ℝ
3129, 30sstri 3924 . . . . . . . . . . . . . 14 𝑍 ⊆ ℝ
32 ltso 10710 . . . . . . . . . . . . . 14 < Or ℝ
33 soss 5457 . . . . . . . . . . . . . 14 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
3431, 32, 33mp2 9 . . . . . . . . . . . . 13 < Or 𝑍
35 soss 5457 . . . . . . . . . . . . 13 (𝐴𝑍 → ( < Or 𝑍 → < Or 𝐴))
3627, 34, 35mpisyl 21 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → < Or 𝐴)
37 fzfi 13335 . . . . . . . . . . . . 13 (1...𝑚) ∈ Fin
38 ovex 7168 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ V
3938f1oen 8513 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
4039adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
4140ensymd 8543 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ≈ (1...𝑚))
42 enfii 8719 . . . . . . . . . . . . 13 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
4337, 41, 42sylancr 590 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ∈ Fin)
44 fz1iso 13816 . . . . . . . . . . . 12 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4536, 43, 44syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
46 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
4746, 13mpan9 510 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
48 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
4948csbeq1d 3832 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
50 csbcow 3843 . . . . . . . . . . . . . . . 16 (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵
5149, 50eqtr4di 2851 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
5251cbvmptv 5133 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
53 eqid 2798 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵)
54 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
5516ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ)
5621ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑀))
57 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
58 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
594, 47, 52, 53, 54, 55, 56, 57, 58summolem2a 15064 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
6059expr 460 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6160exlimdv 1934 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6245, 61mpd 15 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
63 breq2 5034 . . . . . . . . . 10 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6462, 63syl5ibrcom 250 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6564expimpd 457 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6665exlimdv 1934 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6766rexlimdva 3243 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6826, 67jaod 856 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6916adantr 484 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝑀 ∈ ℤ)
7021adantr 484 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝐴 ⊆ (ℤ𝑀))
71 simpr 488 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
72 fveq2 6645 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
7372sseq2d 3947 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑀)))
74 seqeq1 13367 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))))
7574breq1d 5040 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7673, 75anbi12d 633 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)))
7776rspcev 3571 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝐴 ⊆ (ℤ𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7869, 70, 71, 77syl12anc 835 . . . . . . 7 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7978orcd 870 . . . . . 6 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
8079ex 416 . . . . 5 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8168, 80impbid 215 . . . 4 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
82 simpr 488 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
8328, 82sseldi 3913 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℤ)
8482, 20eleqtrrdi 2901 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗𝑍)
85 zsum.4 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
8685ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
8786adantr 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
88 nfcsb1v 3852 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
8988nfeq2 2972 . . . . . . . . . . 11 𝑘(𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
90 fveq2 6645 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
91 csbeq1a 3842 . . . . . . . . . . . 12 (𝑘 = 𝑗 → if(𝑘𝐴, 𝐵, 0) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
9290, 91eqeq12d 2814 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) ↔ (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
9389, 92rspc 3559 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
9484, 87, 93sylc 65 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
95 fvex 6658 . . . . . . . . 9 (𝐹𝑗) ∈ V
9694, 95eqeltrrdi 2899 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ V)
97 nfcv 2955 . . . . . . . . . . 11 𝑛if(𝑘𝐴, 𝐵, 0)
98 nfv 1915 . . . . . . . . . . . 12 𝑘 𝑛𝐴
99 nfcsb1v 3852 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝐵
100 nfcv 2955 . . . . . . . . . . . 12 𝑘0
10198, 99, 100nfif 4454 . . . . . . . . . . 11 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
102 eleq1w 2872 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
103 csbeq1a 3842 . . . . . . . . . . . 12 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
104102, 103ifbieq1d 4448 . . . . . . . . . . 11 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
10597, 101, 104cbvmpt 5131 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
106105eqcomi 2807 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
107106fvmpts 6748 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ V) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
10883, 96, 107syl2anc 587 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
109108, 94eqtr4d 2836 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = (𝐹𝑗))
11016, 109seqfeq 13391 . . . . 5 (𝜑 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , 𝐹))
111110breq1d 5040 . . . 4 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
11281, 111bitrd 282 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
113112iotabidv 6308 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥))
114 df-sum 15035 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
115 df-fv 6332 . 2 ( ⇝ ‘seq𝑀( + , 𝐹)) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥)
116113, 114, 1153eqtr4g 2858 1 (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  csb 3828  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110   Or wor 5437  cio 6281  1-1-ontowf1o 6323  cfv 6324   Isom wiso 6325  (class class class)co 7135  cen 8489  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cn 11625  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  chash 13686  cli 14833  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  isum  15068  sum0  15070  sumz  15071  sumss  15073  fsumsers  15077
  Copyright terms: Public domain W3C validator