MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoihalfsum Structured version   Visualization version   GIF version

Theorem geoihalfsum 15230
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15227. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15229 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
geoihalfsum Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1

Proof of Theorem geoihalfsum
StepHypRef Expression
1 2cn 11700 . . . . 5 2 ∈ ℂ
21a1i 11 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
3 2ne0 11729 . . . . 5 2 ≠ 0
43a1i 11 . . . 4 (𝑘 ∈ ℕ → 2 ≠ 0)
5 nnz 11992 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
62, 4, 5exprecd 13514 . . 3 (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
76sumeq2i 15048 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘))
8 halfcn 11840 . . . 4 (1 / 2) ∈ ℂ
9 halfre 11839 . . . . . 6 (1 / 2) ∈ ℝ
10 halfge0 11842 . . . . . 6 0 ≤ (1 / 2)
11 absid 14648 . . . . . 6 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
129, 10, 11mp2an 691 . . . . 5 (abs‘(1 / 2)) = (1 / 2)
13 halflt1 11843 . . . . 5 (1 / 2) < 1
1412, 13eqbrtri 5051 . . . 4 (abs‘(1 / 2)) < 1
15 geoisum1 15227 . . . 4 (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))))
168, 14, 15mp2an 691 . . 3 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))
17 1mhlfehlf 11844 . . . 4 (1 − (1 / 2)) = (1 / 2)
1817oveq2i 7146 . . 3 ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2))
19 ax-1cn 10584 . . . . 5 1 ∈ ℂ
20 ax-1ne0 10595 . . . . 5 1 ≠ 0
2119, 1, 20, 3divne0i 11377 . . . 4 (1 / 2) ≠ 0
228, 21dividi 11362 . . 3 ((1 / 2) / (1 / 2)) = 1
2316, 18, 223eqtri 2825 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1
247, 23eqtr3i 2823 1 Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  cexp 13425  abscabs 14585  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035
This theorem is referenced by:  omssubadd  31668
  Copyright terms: Public domain W3C validator