Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > geoihalfsum | Structured version Visualization version GIF version |
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15640. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15642 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
Ref | Expression |
---|---|
geoihalfsum | ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12098 | . . . . 5 ⊢ 2 ∈ ℂ | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) |
3 | 2ne0 12127 | . . . . 5 ⊢ 2 ≠ 0 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ≠ 0) |
5 | nnz 12392 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
6 | 2, 4, 5 | exprecd 13922 | . . 3 ⊢ (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
7 | 6 | sumeq2i 15460 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) |
8 | halfcn 12238 | . . . 4 ⊢ (1 / 2) ∈ ℂ | |
9 | halfre 12237 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
10 | halfge0 12240 | . . . . . 6 ⊢ 0 ≤ (1 / 2) | |
11 | absid 15057 | . . . . . 6 ⊢ (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2)) | |
12 | 9, 10, 11 | mp2an 690 | . . . . 5 ⊢ (abs‘(1 / 2)) = (1 / 2) |
13 | halflt1 12241 | . . . . 5 ⊢ (1 / 2) < 1 | |
14 | 12, 13 | eqbrtri 5102 | . . . 4 ⊢ (abs‘(1 / 2)) < 1 |
15 | geoisum1 15640 | . . . 4 ⊢ (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))) | |
16 | 8, 14, 15 | mp2an 690 | . . 3 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))) |
17 | 1mhlfehlf 12242 | . . . 4 ⊢ (1 − (1 / 2)) = (1 / 2) | |
18 | 17 | oveq2i 7318 | . . 3 ⊢ ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2)) |
19 | ax-1cn 10979 | . . . . 5 ⊢ 1 ∈ ℂ | |
20 | ax-1ne0 10990 | . . . . 5 ⊢ 1 ≠ 0 | |
21 | 19, 1, 20, 3 | divne0i 11773 | . . . 4 ⊢ (1 / 2) ≠ 0 |
22 | 8, 21 | dividi 11758 | . . 3 ⊢ ((1 / 2) / (1 / 2)) = 1 |
23 | 16, 18, 22 | 3eqtri 2768 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1 |
24 | 7, 23 | eqtr3i 2766 | 1 ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℂcc 10919 ℝcr 10920 0cc0 10921 1c1 10922 < clt 11059 ≤ cle 11060 − cmin 11255 / cdiv 11682 ℕcn 12023 2c2 12078 ↑cexp 13832 abscabs 14994 Σcsu 15446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-fz 13290 df-fzo 13433 df-fl 13562 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-rlim 15247 df-sum 15447 |
This theorem is referenced by: omssubadd 32316 |
Copyright terms: Public domain | W3C validator |