Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > geoihalfsum | Structured version Visualization version GIF version |
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15580. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15582 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
Ref | Expression |
---|---|
geoihalfsum | ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12037 | . . . . 5 ⊢ 2 ∈ ℂ | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) |
3 | 2ne0 12066 | . . . . 5 ⊢ 2 ≠ 0 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ≠ 0) |
5 | nnz 12331 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
6 | 2, 4, 5 | exprecd 13861 | . . 3 ⊢ (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
7 | 6 | sumeq2i 15400 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) |
8 | halfcn 12177 | . . . 4 ⊢ (1 / 2) ∈ ℂ | |
9 | halfre 12176 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
10 | halfge0 12179 | . . . . . 6 ⊢ 0 ≤ (1 / 2) | |
11 | absid 14997 | . . . . . 6 ⊢ (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2)) | |
12 | 9, 10, 11 | mp2an 689 | . . . . 5 ⊢ (abs‘(1 / 2)) = (1 / 2) |
13 | halflt1 12180 | . . . . 5 ⊢ (1 / 2) < 1 | |
14 | 12, 13 | eqbrtri 5096 | . . . 4 ⊢ (abs‘(1 / 2)) < 1 |
15 | geoisum1 15580 | . . . 4 ⊢ (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))) | |
16 | 8, 14, 15 | mp2an 689 | . . 3 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))) |
17 | 1mhlfehlf 12181 | . . . 4 ⊢ (1 − (1 / 2)) = (1 / 2) | |
18 | 17 | oveq2i 7280 | . . 3 ⊢ ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2)) |
19 | ax-1cn 10918 | . . . . 5 ⊢ 1 ∈ ℂ | |
20 | ax-1ne0 10929 | . . . . 5 ⊢ 1 ≠ 0 | |
21 | 19, 1, 20, 3 | divne0i 11712 | . . . 4 ⊢ (1 / 2) ≠ 0 |
22 | 8, 21 | dividi 11697 | . . 3 ⊢ ((1 / 2) / (1 / 2)) = 1 |
23 | 16, 18, 22 | 3eqtri 2770 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1 |
24 | 7, 23 | eqtr3i 2768 | 1 ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5075 ‘cfv 6428 (class class class)co 7269 ℂcc 10858 ℝcr 10859 0cc0 10860 1c1 10861 < clt 10998 ≤ cle 10999 − cmin 11194 / cdiv 11621 ℕcn 11962 2c2 12017 ↑cexp 13771 abscabs 14934 Σcsu 15386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-inf2 9388 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 ax-pre-sup 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-se 5542 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-isom 6437 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-pm 8607 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-sup 9190 df-inf 9191 df-oi 9258 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-div 11622 df-nn 11963 df-2 12025 df-3 12026 df-n0 12223 df-z 12309 df-uz 12572 df-rp 12720 df-fz 13229 df-fzo 13372 df-fl 13501 df-seq 13711 df-exp 13772 df-hash 14034 df-cj 14799 df-re 14800 df-im 14801 df-sqrt 14935 df-abs 14936 df-clim 15186 df-rlim 15187 df-sum 15387 |
This theorem is referenced by: omssubadd 32254 |
Copyright terms: Public domain | W3C validator |