| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > geoihalfsum | Structured version Visualization version GIF version | ||
| Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15897. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15899 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| geoihalfsum | ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12323 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) |
| 3 | 2ne0 12352 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ≠ 0) |
| 5 | nnz 12617 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 6 | 2, 4, 5 | exprecd 14176 | . . 3 ⊢ (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
| 7 | 6 | sumeq2i 15716 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) |
| 8 | halfcn 12463 | . . . 4 ⊢ (1 / 2) ∈ ℂ | |
| 9 | halfre 12462 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
| 10 | halfge0 12465 | . . . . . 6 ⊢ 0 ≤ (1 / 2) | |
| 11 | absid 15317 | . . . . . 6 ⊢ (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (abs‘(1 / 2)) = (1 / 2) |
| 13 | halflt1 12466 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 14 | 12, 13 | eqbrtri 5144 | . . . 4 ⊢ (abs‘(1 / 2)) < 1 |
| 15 | geoisum1 15897 | . . . 4 ⊢ (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))) | |
| 16 | 8, 14, 15 | mp2an 692 | . . 3 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))) |
| 17 | 1mhlfehlf 12468 | . . . 4 ⊢ (1 − (1 / 2)) = (1 / 2) | |
| 18 | 17 | oveq2i 7424 | . . 3 ⊢ ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2)) |
| 19 | ax-1cn 11195 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 20 | ax-1ne0 11206 | . . . . 5 ⊢ 1 ≠ 0 | |
| 21 | 19, 1, 20, 3 | divne0i 11997 | . . . 4 ⊢ (1 / 2) ≠ 0 |
| 22 | 8, 21 | dividi 11982 | . . 3 ⊢ ((1 / 2) / (1 / 2)) = 1 |
| 23 | 16, 18, 22 | 3eqtri 2761 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1 |
| 24 | 7, 23 | eqtr3i 2759 | 1 ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 ℝcr 11136 0cc0 11137 1c1 11138 < clt 11277 ≤ cle 11278 − cmin 11474 / cdiv 11902 ℕcn 12248 2c2 12303 ↑cexp 14084 abscabs 15255 Σcsu 15704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-clim 15506 df-rlim 15507 df-sum 15705 |
| This theorem is referenced by: omssubadd 34261 |
| Copyright terms: Public domain | W3C validator |