| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > geoihalfsum | Structured version Visualization version GIF version | ||
| Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15804. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15806 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| geoihalfsum | ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12221 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) |
| 3 | 2ne0 12250 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ≠ 0) |
| 5 | nnz 12510 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 6 | 2, 4, 5 | exprecd 14079 | . . 3 ⊢ (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
| 7 | 6 | sumeq2i 15623 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) |
| 8 | halfcn 12356 | . . . 4 ⊢ (1 / 2) ∈ ℂ | |
| 9 | halfre 12355 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
| 10 | halfge0 12358 | . . . . . 6 ⊢ 0 ≤ (1 / 2) | |
| 11 | absid 15221 | . . . . . 6 ⊢ (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (abs‘(1 / 2)) = (1 / 2) |
| 13 | halflt1 12359 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 14 | 12, 13 | eqbrtri 5116 | . . . 4 ⊢ (abs‘(1 / 2)) < 1 |
| 15 | geoisum1 15804 | . . . 4 ⊢ (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))) | |
| 16 | 8, 14, 15 | mp2an 692 | . . 3 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))) |
| 17 | 1mhlfehlf 12361 | . . . 4 ⊢ (1 − (1 / 2)) = (1 / 2) | |
| 18 | 17 | oveq2i 7364 | . . 3 ⊢ ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2)) |
| 19 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 20 | ax-1ne0 11097 | . . . . 5 ⊢ 1 ≠ 0 | |
| 21 | 19, 1, 20, 3 | divne0i 11890 | . . . 4 ⊢ (1 / 2) ≠ 0 |
| 22 | 8, 21 | dividi 11875 | . . 3 ⊢ ((1 / 2) / (1 / 2)) = 1 |
| 23 | 16, 18, 22 | 3eqtri 2756 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1 |
| 24 | 7, 23 | eqtr3i 2754 | 1 ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 < clt 11168 ≤ cle 11169 − cmin 11365 / cdiv 11795 ℕcn 12146 2c2 12201 ↑cexp 13986 abscabs 15159 Σcsu 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 |
| This theorem is referenced by: omssubadd 34270 |
| Copyright terms: Public domain | W3C validator |