MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoihalfsum Structured version   Visualization version   GIF version

Theorem geoihalfsum 15900
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15897. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15899 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
geoihalfsum Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1

Proof of Theorem geoihalfsum
StepHypRef Expression
1 2cn 12323 . . . . 5 2 ∈ ℂ
21a1i 11 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
3 2ne0 12352 . . . . 5 2 ≠ 0
43a1i 11 . . . 4 (𝑘 ∈ ℕ → 2 ≠ 0)
5 nnz 12617 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
62, 4, 5exprecd 14176 . . 3 (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
76sumeq2i 15716 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘))
8 halfcn 12463 . . . 4 (1 / 2) ∈ ℂ
9 halfre 12462 . . . . . 6 (1 / 2) ∈ ℝ
10 halfge0 12465 . . . . . 6 0 ≤ (1 / 2)
11 absid 15317 . . . . . 6 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
129, 10, 11mp2an 692 . . . . 5 (abs‘(1 / 2)) = (1 / 2)
13 halflt1 12466 . . . . 5 (1 / 2) < 1
1412, 13eqbrtri 5144 . . . 4 (abs‘(1 / 2)) < 1
15 geoisum1 15897 . . . 4 (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))))
168, 14, 15mp2an 692 . . 3 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))
17 1mhlfehlf 12468 . . . 4 (1 − (1 / 2)) = (1 / 2)
1817oveq2i 7424 . . 3 ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2))
19 ax-1cn 11195 . . . . 5 1 ∈ ℂ
20 ax-1ne0 11206 . . . . 5 1 ≠ 0
2119, 1, 20, 3divne0i 11997 . . . 4 (1 / 2) ≠ 0
228, 21dividi 11982 . . 3 ((1 / 2) / (1 / 2)) = 1
2316, 18, 223eqtri 2761 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1
247, 23eqtr3i 2759 1 Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  cn 12248  2c2 12303  cexp 14084  abscabs 15255  Σcsu 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-rlim 15507  df-sum 15705
This theorem is referenced by:  omssubadd  34261
  Copyright terms: Public domain W3C validator