| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > geoihalfsum | Structured version Visualization version GIF version | ||
| Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 15786. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 15788 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| geoihalfsum | ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12200 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) |
| 3 | 2ne0 12229 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ≠ 0) |
| 5 | nnz 12489 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 6 | 2, 4, 5 | exprecd 14061 | . . 3 ⊢ (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
| 7 | 6 | sumeq2i 15605 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) |
| 8 | halfcn 12335 | . . . 4 ⊢ (1 / 2) ∈ ℂ | |
| 9 | halfre 12334 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
| 10 | halfge0 12337 | . . . . . 6 ⊢ 0 ≤ (1 / 2) | |
| 11 | absid 15203 | . . . . . 6 ⊢ (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (abs‘(1 / 2)) = (1 / 2) |
| 13 | halflt1 12338 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 14 | 12, 13 | eqbrtri 5112 | . . . 4 ⊢ (abs‘(1 / 2)) < 1 |
| 15 | geoisum1 15786 | . . . 4 ⊢ (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))) | |
| 16 | 8, 14, 15 | mp2an 692 | . . 3 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))) |
| 17 | 1mhlfehlf 12340 | . . . 4 ⊢ (1 − (1 / 2)) = (1 / 2) | |
| 18 | 17 | oveq2i 7357 | . . 3 ⊢ ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2)) |
| 19 | ax-1cn 11064 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 20 | ax-1ne0 11075 | . . . . 5 ⊢ 1 ≠ 0 | |
| 21 | 19, 1, 20, 3 | divne0i 11869 | . . . 4 ⊢ (1 / 2) ≠ 0 |
| 22 | 8, 21 | dividi 11854 | . . 3 ⊢ ((1 / 2) / (1 / 2)) = 1 |
| 23 | 16, 18, 22 | 3eqtri 2758 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1 |
| 24 | 7, 23 | eqtr3i 2756 | 1 ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 ↑cexp 13968 abscabs 15141 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 |
| This theorem is referenced by: omssubadd 34311 |
| Copyright terms: Public domain | W3C validator |