MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsum Structured version   Visualization version   GIF version

Theorem cbvsum 15661
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
cbvsum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvsum.2 𝑘𝐵
cbvsum.3 𝑗𝐶
Assertion
Ref Expression
cbvsum Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvsum
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvsum.2 . . . . . . . . . . . . 13 𝑘𝐵
2 cbvsum.3 . . . . . . . . . . . . 13 𝑗𝐶
3 cbvsum.1 . . . . . . . . . . . . 13 (𝑗 = 𝑘𝐵 = 𝐶)
41, 2, 3cbvcsbw 3872 . . . . . . . . . . . 12 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶
54a1i 11 . . . . . . . . . . 11 (⊤ → 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶)
65ifeq1d 4508 . . . . . . . . . 10 (⊤ → if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
76mpteq2dv 5201 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
87seqeq3d 13974 . . . . . . . 8 (⊤ → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
98mptru 1547 . . . . . . 7 seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
109breq1i 5114 . . . . . 6 (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)
1110anbi2i 623 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
1211rexbii 3076 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
131, 2, 3cbvcsbw 3872 . . . . . . . . . . . . 13 (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶
1413a1i 11 . . . . . . . . . . . 12 (⊤ → (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶)
1514mpteq2dv 5201 . . . . . . . . . . 11 (⊤ → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1615seqeq3d 13974 . . . . . . . . . 10 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)))
1716mptru 1547 . . . . . . . . 9 seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1817fveq1i 6859 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)
1918eqeq2i 2742 . . . . . . 7 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
2019anbi2i 623 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2120exbii 1848 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2221rexbii 3076 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2312, 22orbi12i 914 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2423iotabii 6496 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
25 df-sum 15653 . 2 Σ𝑗𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))))
26 df-sum 15653 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2724, 25, 263eqtr4i 2762 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wtru 1541  wex 1779  wcel 2109  wnfc 2876  wrex 3053  csb 3862  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  cio 6462  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  cli 15450  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-sum 15653
This theorem is referenced by:  sumfc  15675  sumss2  15692  fsumclf  15704  fsumzcl2  15705  fsumsplitf  15708  sumsnf  15709  sumsns  15716  fsummsnunz  15720  fsumsplitsnun  15721  fsum2dlem  15736  fsumcom2  15740  fsumshftm  15747  fsumrlim  15777  fsumo1  15778  o1fsum  15779  fsumiun  15787  ovolfiniun  25402  ovoliun2  25407  volfiniun  25448  itgfsum  25728  elplyd  26107  coeeq2  26147  fsumdvdscom  27095  fsumdvdsmul  27105  fsumdvdsmulOLD  27107  fsumvma  27124  fsumiunle  32754  esumpfinvalf  34066  fsumshftd  38945  sticksstones8  42141  sticksstones10  42143  sticksstones12a  42145  sticksstones12  42146  aks6d1c7lem3  42170  binomcxplemdvsum  44344  sumsnd  45020  fsummulc1f  45569  fsumf1of  45572  fsumiunss  45573  fsumreclf  45574  fsumlessf  45575  fsumsermpt  45577  dvnmul  45941  fourierdlem115  46219  sge0revalmpt  46376  sge0fsummpt  46388  sge0iunmptlemfi  46411  sge0iunmptlemre  46413  sge0ltfirpmpt2  46424  sge0isummpt2  46430  sge0xaddlem2  46432  sge0fsummptf  46434  fsummsndifre  47373  fsumsplitsndif  47374  fsummmodsndifre  47375  fsummmodsnunz  47376
  Copyright terms: Public domain W3C validator