| Step | Hyp | Ref
| Expression |
| 1 | | df-sum 15703 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
| 2 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑥ℤ |
| 3 | | nfsum.1 |
. . . . . . 7
⊢
Ⅎ𝑥𝐴 |
| 4 | | nfcv 2898 |
. . . . . . 7
⊢
Ⅎ𝑥(ℤ≥‘𝑚) |
| 5 | 3, 4 | nfss 3951 |
. . . . . 6
⊢
Ⅎ𝑥 𝐴 ⊆
(ℤ≥‘𝑚) |
| 6 | | nfcv 2898 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑚 |
| 7 | | nfcv 2898 |
. . . . . . . 8
⊢
Ⅎ𝑥
+ |
| 8 | 3 | nfcri 2890 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑛 ∈ 𝐴 |
| 9 | | nfcv 2898 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑛 |
| 10 | | nfsum.2 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐵 |
| 11 | 9, 10 | nfcsbw 3900 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑛 / 𝑘⦌𝐵 |
| 12 | | nfcv 2898 |
. . . . . . . . . 10
⊢
Ⅎ𝑥0 |
| 13 | 8, 11, 12 | nfif 4531 |
. . . . . . . . 9
⊢
Ⅎ𝑥if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
| 14 | 2, 13 | nfmpt 5219 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
| 15 | 6, 7, 14 | nfseq 14029 |
. . . . . . 7
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) |
| 16 | | nfcv 2898 |
. . . . . . 7
⊢
Ⅎ𝑥
⇝ |
| 17 | | nfcv 2898 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
| 18 | 15, 16, 17 | nfbr 5166 |
. . . . . 6
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧 |
| 19 | 5, 18 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑥(𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) |
| 20 | 2, 19 | nfrexw 3293 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) |
| 21 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑥ℕ |
| 22 | | nfcv 2898 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑓 |
| 23 | | nfcv 2898 |
. . . . . . . 8
⊢
Ⅎ𝑥(1...𝑚) |
| 24 | 22, 23, 3 | nff1o 6816 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑓:(1...𝑚)–1-1-onto→𝐴 |
| 25 | | nfcv 2898 |
. . . . . . . . . 10
⊢
Ⅎ𝑥1 |
| 26 | | nfcv 2898 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑓‘𝑛) |
| 27 | 26, 10 | nfcsbw 3900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
| 28 | 21, 27 | nfmpt 5219 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
| 29 | 25, 7, 28 | nfseq 14029 |
. . . . . . . . 9
⊢
Ⅎ𝑥seq1(
+ , (𝑛 ∈ ℕ
↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)) |
| 30 | 29, 6 | nffv 6886 |
. . . . . . . 8
⊢
Ⅎ𝑥(seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) |
| 31 | 30 | nfeq2 2916 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) |
| 32 | 24, 31 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑥(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
| 33 | 32 | nfex 2324 |
. . . . 5
⊢
Ⅎ𝑥∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
| 34 | 21, 33 | nfrexw 3293 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
| 35 | 20, 34 | nfor 1904 |
. . 3
⊢
Ⅎ𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
| 36 | 35 | nfiotaw 6488 |
. 2
⊢
Ⅎ𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
| 37 | 1, 36 | nfcxfr 2896 |
1
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 |