MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsum Structured version   Visualization version   GIF version

Theorem nfsum 15664
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. Version of nfsum 15664 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 11-Dec-2005.) (Revised by GG, 24-Feb-2024.)
Hypotheses
Ref Expression
nfsum.1 𝑥𝐴
nfsum.2 𝑥𝐵
Assertion
Ref Expression
nfsum 𝑥Σ𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfsum
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15660 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2892 . . . . 5 𝑥
3 nfsum.1 . . . . . . 7 𝑥𝐴
4 nfcv 2892 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3942 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
6 nfcv 2892 . . . . . . . 8 𝑥𝑚
7 nfcv 2892 . . . . . . . 8 𝑥 +
83nfcri 2884 . . . . . . . . . 10 𝑥 𝑛𝐴
9 nfcv 2892 . . . . . . . . . . 11 𝑥𝑛
10 nfsum.2 . . . . . . . . . . 11 𝑥𝐵
119, 10nfcsbw 3891 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
12 nfcv 2892 . . . . . . . . . 10 𝑥0
138, 11, 12nfif 4522 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
142, 13nfmpt 5208 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
156, 7, 14nfseq 13983 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
16 nfcv 2892 . . . . . . 7 𝑥
17 nfcv 2892 . . . . . . 7 𝑥𝑧
1815, 16, 17nfbr 5157 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧
195, 18nfan 1899 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
202, 19nfrexw 3289 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
21 nfcv 2892 . . . . 5 𝑥
22 nfcv 2892 . . . . . . . 8 𝑥𝑓
23 nfcv 2892 . . . . . . . 8 𝑥(1...𝑚)
2422, 23, 3nff1o 6801 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
25 nfcv 2892 . . . . . . . . . 10 𝑥1
26 nfcv 2892 . . . . . . . . . . . 12 𝑥(𝑓𝑛)
2726, 10nfcsbw 3891 . . . . . . . . . . 11 𝑥(𝑓𝑛) / 𝑘𝐵
2821, 27nfmpt 5208 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
2925, 7, 28nfseq 13983 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3029, 6nffv 6871 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3130nfeq2 2910 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3224, 31nfan 1899 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3332nfex 2323 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3421, 33nfrexw 3289 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3520, 34nfor 1904 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3635nfiotaw 6471 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
371, 36nfcxfr 2890 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wnfc 2877  wrex 3054  csb 3865  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  cio 6465  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cli 15457  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-sum 15660
This theorem is referenced by:  fsum2dlem  15743  fsumcom2  15747  fsumrlim  15784  fsumiun  15794  fsumcn  24768  fsum2cn  24769  nfitg1  25682  nfitg  25683  dvmptfsum  25886  fsumdvdscom  27102  binomcxplemdvsum  44351  binomcxplemnotnn0  44352  fsumcnf  45022  fsumiunss  45580  dvmptfprod  45950  sge0iunmptlemre  46420
  Copyright terms: Public domain W3C validator