MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsum1 Structured version   Visualization version   GIF version

Theorem nfsum1 15382
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypothesis
Ref Expression
nfsum1.1 𝑘𝐴
Assertion
Ref Expression
nfsum1 𝑘Σ𝑘𝐴 𝐵

Proof of Theorem nfsum1
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15379 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2908 . . . . 5 𝑘
3 nfsum1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2908 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 3917 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
6 nfcv 2908 . . . . . . . 8 𝑘𝑚
7 nfcv 2908 . . . . . . . 8 𝑘 +
83nfcri 2895 . . . . . . . . . 10 𝑘 𝑛𝐴
9 nfcsb1v 3861 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
10 nfcv 2908 . . . . . . . . . 10 𝑘0
118, 9, 10nfif 4494 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
122, 11nfmpt 5185 . . . . . . . 8 𝑘(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
136, 7, 12nfseq 13712 . . . . . . 7 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
14 nfcv 2908 . . . . . . 7 𝑘
15 nfcv 2908 . . . . . . 7 𝑘𝑥
1613, 14, 15nfbr 5125 . . . . . 6 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
175, 16nfan 1905 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
182, 17nfrex 3239 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
19 nfcv 2908 . . . . 5 𝑘
20 nfcv 2908 . . . . . . . 8 𝑘𝑓
21 nfcv 2908 . . . . . . . 8 𝑘(1...𝑚)
2220, 21, 3nff1o 6710 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
23 nfcv 2908 . . . . . . . . . 10 𝑘1
24 nfcsb1v 3861 . . . . . . . . . . 11 𝑘(𝑓𝑛) / 𝑘𝐵
2519, 24nfmpt 5185 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
2623, 7, 25nfseq 13712 . . . . . . . . 9 𝑘seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
2726, 6nffv 6778 . . . . . . . 8 𝑘(seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
2827nfeq2 2925 . . . . . . 7 𝑘 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
2922, 28nfan 1905 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3029nfex 2321 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3119, 30nfrex 3239 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3218, 31nfor 1910 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3332nfiotaw 6392 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
341, 33nfcxfr 2906 1 𝑘Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1541  wex 1785  wcel 2109  wnfc 2888  wrex 3066  csb 3836  wss 3891  ifcif 4464   class class class wbr 5078  cmpt 5161  cio 6386  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858  cn 11956  cz 12302  cuz 12564  ...cfz 13221  seqcseq 13702  cli 15174  Σcsu 15378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-seq 13703  df-sum 15379
This theorem is referenced by:  dvmptfprod  43440  dvnprodlem1  43441  fourierdlem112  43713  etransclem32  43761  sge0reuz  43939
  Copyright terms: Public domain W3C validator