Step | Hyp | Ref
| Expression |
1 | | df-sum 15398 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
2 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑘ℤ |
3 | | nfsum1.1 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
4 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘(ℤ≥‘𝑚) |
5 | 3, 4 | nfss 3913 |
. . . . . 6
⊢
Ⅎ𝑘 𝐴 ⊆
(ℤ≥‘𝑚) |
6 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑚 |
7 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘
+ |
8 | 3 | nfcri 2894 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑛 ∈ 𝐴 |
9 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
10 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑘0 |
11 | 8, 9, 10 | nfif 4489 |
. . . . . . . . 9
⊢
Ⅎ𝑘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
12 | 2, 11 | nfmpt 5181 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
13 | 6, 7, 12 | nfseq 13731 |
. . . . . . 7
⊢
Ⅎ𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) |
14 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘
⇝ |
15 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘𝑥 |
16 | 13, 14, 15 | nfbr 5121 |
. . . . . 6
⊢
Ⅎ𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 |
17 | 5, 16 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑘(𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
18 | 2, 17 | nfrex 3242 |
. . . 4
⊢
Ⅎ𝑘∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
19 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑘ℕ |
20 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑓 |
21 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘(1...𝑚) |
22 | 20, 21, 3 | nff1o 6714 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑓:(1...𝑚)–1-1-onto→𝐴 |
23 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑘1 |
24 | | nfcsb1v 3857 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
25 | 19, 24 | nfmpt 5181 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
26 | 23, 7, 25 | nfseq 13731 |
. . . . . . . . 9
⊢
Ⅎ𝑘seq1(
+ , (𝑛 ∈ ℕ
↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)) |
27 | 26, 6 | nffv 6784 |
. . . . . . . 8
⊢
Ⅎ𝑘(seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) |
28 | 27 | nfeq2 2924 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) |
29 | 22, 28 | nfan 1902 |
. . . . . 6
⊢
Ⅎ𝑘(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
30 | 29 | nfex 2318 |
. . . . 5
⊢
Ⅎ𝑘∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
31 | 19, 30 | nfrex 3242 |
. . . 4
⊢
Ⅎ𝑘∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
32 | 18, 31 | nfor 1907 |
. . 3
⊢
Ⅎ𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
33 | 32 | nfiotaw 6395 |
. 2
⊢
Ⅎ𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
34 | 1, 33 | nfcxfr 2905 |
1
⊢
Ⅎ𝑘Σ𝑘 ∈ 𝐴 𝐵 |