MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsum1 Structured version   Visualization version   GIF version

Theorem nfsum1 15401
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypothesis
Ref Expression
nfsum1.1 𝑘𝐴
Assertion
Ref Expression
nfsum1 𝑘Σ𝑘𝐴 𝐵

Proof of Theorem nfsum1
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15398 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2907 . . . . 5 𝑘
3 nfsum1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2907 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 3913 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
6 nfcv 2907 . . . . . . . 8 𝑘𝑚
7 nfcv 2907 . . . . . . . 8 𝑘 +
83nfcri 2894 . . . . . . . . . 10 𝑘 𝑛𝐴
9 nfcsb1v 3857 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
10 nfcv 2907 . . . . . . . . . 10 𝑘0
118, 9, 10nfif 4489 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
122, 11nfmpt 5181 . . . . . . . 8 𝑘(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
136, 7, 12nfseq 13731 . . . . . . 7 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
14 nfcv 2907 . . . . . . 7 𝑘
15 nfcv 2907 . . . . . . 7 𝑘𝑥
1613, 14, 15nfbr 5121 . . . . . 6 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
175, 16nfan 1902 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
182, 17nfrex 3242 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
19 nfcv 2907 . . . . 5 𝑘
20 nfcv 2907 . . . . . . . 8 𝑘𝑓
21 nfcv 2907 . . . . . . . 8 𝑘(1...𝑚)
2220, 21, 3nff1o 6714 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
23 nfcv 2907 . . . . . . . . . 10 𝑘1
24 nfcsb1v 3857 . . . . . . . . . . 11 𝑘(𝑓𝑛) / 𝑘𝐵
2519, 24nfmpt 5181 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
2623, 7, 25nfseq 13731 . . . . . . . . 9 𝑘seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
2726, 6nffv 6784 . . . . . . . 8 𝑘(seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
2827nfeq2 2924 . . . . . . 7 𝑘 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
2922, 28nfan 1902 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3029nfex 2318 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3119, 30nfrex 3242 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3218, 31nfor 1907 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3332nfiotaw 6395 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
341, 33nfcxfr 2905 1 𝑘Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wnfc 2887  wrex 3065  csb 3832  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cio 6389  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seq 13722  df-sum 15398
This theorem is referenced by:  dvmptfprod  43486  dvnprodlem1  43487  fourierdlem112  43759  etransclem32  43807  sge0reuz  43985
  Copyright terms: Public domain W3C validator