MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum Structured version   Visualization version   GIF version

Theorem fsum 15309
Description: The value of a sum over a nonempty finite set. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsum (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑘   𝑘,𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsum
Dummy variables 𝑓 𝑖 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15275 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 fvex 6749 . . 3 (seq1( + , 𝐺)‘𝑀) ∈ V
3 eleq1w 2821 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛𝐴𝑗𝐴))
4 csbeq1 3829 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 / 𝑘𝐵 = 𝑗 / 𝑘𝐵)
53, 4ifbieq1d 4478 . . . . . . . . 9 (𝑛 = 𝑗 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
65cbvmptv 5173 . . . . . . . 8 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
7 fsum.4 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 3106 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
9 nfcsb1v 3851 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
109nfel1 2921 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
11 csbeq1a 3840 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1211eleq1d 2823 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
1310, 12rspc 3538 . . . . . . . . 9 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
148, 13mpan9 510 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
15 fveq2 6736 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
1615csbeq1d 3830 . . . . . . . . . 10 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵)
17 csbcow 3841 . . . . . . . . . 10 (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵
1816, 17eqtr4di 2797 . . . . . . . . 9 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
1918cbvmptv 5173 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑖 ∈ ℕ ↦ (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
206, 14, 19summo 15306 . . . . . . 7 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
21 fsum.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
22 fsum.3 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
23 f1of 6680 . . . . . . . . . . . 12 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝐹:(1...𝑀)⟶𝐴)
25 ovex 7265 . . . . . . . . . . 11 (1...𝑀) ∈ V
26 fex 7061 . . . . . . . . . . 11 ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
2724, 25, 26sylancl 589 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
28 nnuz 12502 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2921, 28eleqtrdi 2849 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘1))
30 fsum.5 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
31 elfznn 13166 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℕ)
32 fvex 6749 . . . . . . . . . . . . . . . . 17 (𝐺𝑛) ∈ V
3330, 32eqeltrrdi 2848 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ V)
34 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ 𝐶) = (𝑛 ∈ ℕ ↦ 𝐶)
3534fvmpt2 6848 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝐶 ∈ V) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3631, 33, 35syl2an2 686 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3730, 36eqtr4d 2781 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
3837ralrimiva 3106 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
39 nffvmpt1 6747 . . . . . . . . . . . . . . 15 𝑛((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
4039nfeq2 2922 . . . . . . . . . . . . . 14 𝑛(𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
41 fveq2 6736 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
42 fveq2 6736 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4341, 42eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) ↔ (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4440, 43rspc 3538 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑀) → (∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4538, 44mpan9 510 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4629, 45seqfveq 13625 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
4722, 46jca 515 . . . . . . . . . 10 (𝜑 → (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
48 f1oeq1 6668 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)–1-1-onto𝐴))
49 fveq1 6735 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
5049csbeq1d 3830 . . . . . . . . . . . . . . . 16 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
51 fvex 6749 . . . . . . . . . . . . . . . . 17 (𝐹𝑛) ∈ V
52 fsum.1 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
5351, 52csbie 3862 . . . . . . . . . . . . . . . 16 (𝐹𝑛) / 𝑘𝐵 = 𝐶
5450, 53eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = 𝐶)
5554mpteq2dv 5166 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ 𝐶))
5655seqeq3d 13607 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ 𝐶)))
5756fveq1d 6738 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
5857eqeq2d 2749 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
5948, 58anbi12d 634 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))))
6027, 47, 59spcedv 3526 . . . . . . . . 9 (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
61 oveq2 7240 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
6261f1oeq2d 6676 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
63 fveq2 6736 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))
6463eqeq2d 2749 . . . . . . . . . . . 12 (𝑚 = 𝑀 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
6562, 64anbi12d 634 . . . . . . . . . . 11 (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6665exbidv 1929 . . . . . . . . . 10 (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6766rspcev 3550 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6821, 60, 67syl2anc 587 . . . . . . . 8 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6968olcd 874 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
70 breq2 5072 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)))
7170anbi2d 632 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
7271rexbidv 3224 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
73 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7473anbi2d 632 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7574exbidv 1929 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7675rexbidv 3224 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7772, 76orbi12d 919 . . . . . . . . . . 11 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
7877moi2 3644 . . . . . . . . . 10 ((((seq1( + , 𝐺)‘𝑀) ∈ V ∧ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
792, 78mpanl1 700 . . . . . . . . 9 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8079ancom2s 650 . . . . . . . 8 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8180expr 460 . . . . . . 7 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8220, 69, 81syl2anc 587 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8369, 77syl5ibrcom 250 . . . . . 6 (𝜑 → (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8482, 83impbid 215 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8584adantr 484 . . . 4 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8685iota5 6381 . . 3 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
872, 86mpan2 691 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
881, 87eqtrid 2790 1 (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wex 1787  wcel 2111  ∃*wmo 2538  wral 3062  wrex 3063  Vcvv 3421  csb 3826  wss 3881  ifcif 4454   class class class wbr 5068  cmpt 5150  cio 6354  wf 6394  1-1-ontowf1o 6397  cfv 6398  (class class class)co 7232  cc 10752  0cc0 10754  1c1 10755   + caddc 10757  cn 11855  cz 12201  cuz 12463  ...cfz 13120  seqcseq 13599  cli 15070  Σcsu 15274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-sup 9083  df-oi 9151  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-n0 12116  df-z 12202  df-uz 12464  df-rp 12612  df-fz 13121  df-fzo 13264  df-seq 13600  df-exp 13661  df-hash 13922  df-cj 14687  df-re 14688  df-im 14689  df-sqrt 14823  df-abs 14824  df-clim 15074  df-sum 15275
This theorem is referenced by:  sumz  15311  fsumf1o  15312  fsumcl2lem  15320  fsumadd  15329  sumsnf  15332  fsummulc2  15373  fsumconst  15379  fsumrelem  15396  gsumfsum  20455  sumsnd  42271
  Copyright terms: Public domain W3C validator