MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum Structured version   Visualization version   GIF version

Theorem fsum 15069
Description: The value of a sum over a nonempty finite set. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsum (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑘   𝑘,𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsum
Dummy variables 𝑓 𝑖 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15035 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 fvex 6658 . . 3 (seq1( + , 𝐺)‘𝑀) ∈ V
3 eleq1w 2872 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛𝐴𝑗𝐴))
4 csbeq1 3831 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 / 𝑘𝐵 = 𝑗 / 𝑘𝐵)
53, 4ifbieq1d 4448 . . . . . . . . 9 (𝑛 = 𝑗 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
65cbvmptv 5133 . . . . . . . 8 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
7 fsum.4 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
9 nfcsb1v 3852 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
109nfel1 2971 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
11 csbeq1a 3842 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1211eleq1d 2874 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
1310, 12rspc 3559 . . . . . . . . 9 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
148, 13mpan9 510 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
15 fveq2 6645 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
1615csbeq1d 3832 . . . . . . . . . 10 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵)
17 csbcow 3843 . . . . . . . . . 10 (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵
1816, 17eqtr4di 2851 . . . . . . . . 9 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
1918cbvmptv 5133 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑖 ∈ ℕ ↦ (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
206, 14, 19summo 15066 . . . . . . 7 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
21 fsum.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
22 fsum.3 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
23 f1of 6590 . . . . . . . . . . . 12 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝐹:(1...𝑀)⟶𝐴)
25 ovex 7168 . . . . . . . . . . 11 (1...𝑀) ∈ V
26 fex 6966 . . . . . . . . . . 11 ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
2724, 25, 26sylancl 589 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
28 nnuz 12269 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2921, 28eleqtrdi 2900 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘1))
30 fsum.5 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
31 elfznn 12931 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℕ)
32 fvex 6658 . . . . . . . . . . . . . . . . 17 (𝐺𝑛) ∈ V
3330, 32eqeltrrdi 2899 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ V)
34 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ 𝐶) = (𝑛 ∈ ℕ ↦ 𝐶)
3534fvmpt2 6756 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝐶 ∈ V) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3631, 33, 35syl2an2 685 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3730, 36eqtr4d 2836 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
3837ralrimiva 3149 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
39 nffvmpt1 6656 . . . . . . . . . . . . . . 15 𝑛((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
4039nfeq2 2972 . . . . . . . . . . . . . 14 𝑛(𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
41 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
42 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4341, 42eqeq12d 2814 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) ↔ (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4440, 43rspc 3559 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑀) → (∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4538, 44mpan9 510 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4629, 45seqfveq 13390 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
4722, 46jca 515 . . . . . . . . . 10 (𝜑 → (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
48 f1oeq1 6579 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)–1-1-onto𝐴))
49 fveq1 6644 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
5049csbeq1d 3832 . . . . . . . . . . . . . . . 16 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
51 fvex 6658 . . . . . . . . . . . . . . . . 17 (𝐹𝑛) ∈ V
52 fsum.1 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
5351, 52csbie 3863 . . . . . . . . . . . . . . . 16 (𝐹𝑛) / 𝑘𝐵 = 𝐶
5450, 53eqtrdi 2849 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = 𝐶)
5554mpteq2dv 5126 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ 𝐶))
5655seqeq3d 13372 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ 𝐶)))
5756fveq1d 6647 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
5857eqeq2d 2809 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
5948, 58anbi12d 633 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))))
6027, 47, 59spcedv 3547 . . . . . . . . 9 (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
61 oveq2 7143 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
6261f1oeq2d 6586 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
63 fveq2 6645 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))
6463eqeq2d 2809 . . . . . . . . . . . 12 (𝑚 = 𝑀 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
6562, 64anbi12d 633 . . . . . . . . . . 11 (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6665exbidv 1922 . . . . . . . . . 10 (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6766rspcev 3571 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6821, 60, 67syl2anc 587 . . . . . . . 8 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6968olcd 871 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
70 breq2 5034 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)))
7170anbi2d 631 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
7271rexbidv 3256 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
73 eqeq1 2802 . . . . . . . . . . . . . . 15 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7473anbi2d 631 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7574exbidv 1922 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7675rexbidv 3256 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7772, 76orbi12d 916 . . . . . . . . . . 11 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
7877moi2 3655 . . . . . . . . . 10 ((((seq1( + , 𝐺)‘𝑀) ∈ V ∧ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
792, 78mpanl1 699 . . . . . . . . 9 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8079ancom2s 649 . . . . . . . 8 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8180expr 460 . . . . . . 7 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8220, 69, 81syl2anc 587 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8369, 77syl5ibrcom 250 . . . . . 6 (𝜑 → (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8482, 83impbid 215 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8584adantr 484 . . . 4 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8685iota5 6307 . . 3 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
872, 86mpan2 690 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
881, 87syl5eq 2845 1 (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2596  wral 3106  wrex 3107  Vcvv 3441  csb 3828  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  cio 6281  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cn 11625  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cli 14833  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  sumz  15071  fsumf1o  15072  fsumcl2lem  15080  fsumadd  15088  sumsnf  15091  fsummulc2  15131  fsumconst  15137  fsumrelem  15154  gsumfsum  20158  sumsnd  41655
  Copyright terms: Public domain W3C validator