| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . . . . . . 8
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | 
| 2 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) | 
| 3 |  | simplll 774 | . . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) ∧ 𝑛 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶)) | 
| 4 |  | nfcv 2904 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘
I | 
| 5 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 | 
| 6 | 4, 5 | nffv 6915 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘( I
‘⦋𝑛 /
𝑘⦌𝐵) | 
| 7 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐶 | 
| 8 | 4, 7 | nffv 6915 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘( I
‘⦋𝑛 /
𝑘⦌𝐶) | 
| 9 | 6, 8 | nfeq 2918 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘( I
‘⦋𝑛 /
𝑘⦌𝐵) = ( I
‘⦋𝑛 /
𝑘⦌𝐶) | 
| 10 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) | 
| 11 | 10 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ( I ‘𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐵)) | 
| 12 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → 𝐶 = ⦋𝑛 / 𝑘⦌𝐶) | 
| 13 | 12 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ( I ‘𝐶) = ( I ‘⦋𝑛 / 𝑘⦌𝐶)) | 
| 14 | 11, 13 | eqeq12d 2752 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (( I ‘𝐵) = ( I ‘𝐶) ↔ ( I ‘⦋𝑛 / 𝑘⦌𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐶))) | 
| 15 | 9, 14 | rspc 3609 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ( I ‘⦋𝑛 / 𝑘⦌𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐶))) | 
| 16 | 2, 3, 15 | sylc 65 | . . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) ∧ 𝑛 ∈ 𝐴) → ( I ‘⦋𝑛 / 𝑘⦌𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐶)) | 
| 17 | 16 | ifeq1da 4556 | . . . . . . . . . . . 12
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐵), ( I ‘0)) = if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐶), ( I ‘0))) | 
| 18 |  | fvif 6921 | . . . . . . . . . . . 12
⊢ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐵), ( I ‘0)) | 
| 19 |  | fvif 6921 | . . . . . . . . . . . 12
⊢ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) = if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐶), ( I ‘0)) | 
| 20 | 17, 18, 19 | 3eqtr4g 2801 | . . . . . . . . . . 11
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) | 
| 21 | 20 | mpteq2dv 5243 | . . . . . . . . . 10
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) | 
| 22 | 21 | fveq1d 6907 | . . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))‘𝑥)) | 
| 23 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) | 
| 24 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) | 
| 25 | 23, 24 | fvmptex 7029 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)))‘𝑥) | 
| 26 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) | 
| 27 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) | 
| 28 | 26, 27 | fvmptex 7029 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))‘𝑥) | 
| 29 | 22, 25, 28 | 3eqtr4g 2801 | . . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))‘𝑥)) | 
| 30 | 1, 29 | seqfeq 14069 | . . . . . . 7
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) | 
| 31 | 30 | breq1d 5152 | . . . . . 6
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) | 
| 32 | 31 | anbi2d 630 | . . . . 5
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) | 
| 33 | 32 | rexbidva 3176 | . . . 4
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) | 
| 34 |  | simplr 768 | . . . . . . . . . 10
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℕ) | 
| 35 |  | nnuz 12922 | . . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) | 
| 36 | 34, 35 | eleqtrdi 2850 | . . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈
(ℤ≥‘1)) | 
| 37 |  | f1of 6847 | . . . . . . . . . . . . . 14
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → 𝑓:(1...𝑚)⟶𝐴) | 
| 38 | 37 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑓:(1...𝑚)⟶𝐴) | 
| 39 |  | ffvelcdm 7100 | . . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)⟶𝐴 ∧ 𝑥 ∈ (1...𝑚)) → (𝑓‘𝑥) ∈ 𝐴) | 
| 40 | 38, 39 | sylancom 588 | . . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓‘𝑥) ∈ 𝐴) | 
| 41 |  | simplll 774 | . . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶)) | 
| 42 |  | nfcsb1v 3922 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) | 
| 43 |  | nfcsb1v 3922 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) | 
| 44 | 42, 43 | nfeq 2918 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) | 
| 45 |  | csbeq1a 3912 | . . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑥) → ( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵)) | 
| 46 |  | csbeq1a 3912 | . . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑥) → ( I ‘𝐶) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶)) | 
| 47 | 45, 46 | eqeq12d 2752 | . . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑥) → (( I ‘𝐵) = ( I ‘𝐶) ↔ ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶))) | 
| 48 | 44, 47 | rspc 3609 | . . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶))) | 
| 49 | 40, 41, 48 | sylc 65 | . . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶)) | 
| 50 |  | fvex 6918 | . . . . . . . . . . . 12
⊢ (𝑓‘𝑥) ∈ V | 
| 51 |  | csbfv2g 6954 | . . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ V → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) | 
| 52 | 50, 51 | ax-mp 5 | . . . . . . . . . . 11
⊢
⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵) | 
| 53 |  | csbfv2g 6954 | . . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ V → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) | 
| 54 | 50, 53 | ax-mp 5 | . . . . . . . . . . 11
⊢
⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶) | 
| 55 | 49, 52, 54 | 3eqtr3g 2799 | . . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) | 
| 56 |  | elfznn 13594 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (1...𝑚) → 𝑥 ∈ ℕ) | 
| 57 | 56 | adantl 481 | . . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑥 ∈ ℕ) | 
| 58 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → (𝑓‘𝑛) = (𝑓‘𝑥)) | 
| 59 | 58 | csbeq1d 3902 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑥) / 𝑘⦌𝐵) | 
| 60 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) | 
| 61 | 59, 60 | fvmpti 7014 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) | 
| 62 | 57, 61 | syl 17 | . . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) | 
| 63 | 58 | csbeq1d 3902 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 = ⦋(𝑓‘𝑥) / 𝑘⦌𝐶) | 
| 64 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐶) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) | 
| 65 | 63, 64 | fvmpti 7014 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) | 
| 66 | 57, 65 | syl 17 | . . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) | 
| 67 | 55, 62, 66 | 3eqtr4d 2786 | . . . . . . . . 9
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥)) | 
| 68 | 36, 67 | seqfveq 14068 | . . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) | 
| 69 | 68 | eqeq2d 2747 | . . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) | 
| 70 | 69 | pm5.32da 579 | . . . . . 6
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | 
| 71 | 70 | exbidv 1920 | . . . . 5
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | 
| 72 | 71 | rexbidva 3176 | . . . 4
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | 
| 73 | 33, 72 | orbi12d 918 | . . 3
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) | 
| 74 | 73 | iotabidv 6544 | . 2
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) | 
| 75 |  | df-sum 15724 | . 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | 
| 76 |  | df-sum 15724 | . 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | 
| 77 | 74, 75, 76 | 3eqtr4g 2801 | 1
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |