MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq2ii Structured version   Visualization version   GIF version

Theorem sumeq2ii 15041
Description: Equality theorem for sum, with the class expressions 𝐵 and 𝐶 guarded by I to be always sets. (Contributed by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq2ii (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2ii
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . 8 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
2 simpr 488 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) ∧ 𝑛𝐴) → 𝑛𝐴)
3 simplll 774 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) ∧ 𝑛𝐴) → ∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶))
4 nfcv 2979 . . . . . . . . . . . . . . . . 17 𝑘 I
5 nfcsb1v 3879 . . . . . . . . . . . . . . . . 17 𝑘𝑛 / 𝑘𝐵
64, 5nffv 6662 . . . . . . . . . . . . . . . 16 𝑘( I ‘𝑛 / 𝑘𝐵)
7 nfcsb1v 3879 . . . . . . . . . . . . . . . . 17 𝑘𝑛 / 𝑘𝐶
84, 7nffv 6662 . . . . . . . . . . . . . . . 16 𝑘( I ‘𝑛 / 𝑘𝐶)
96, 8nfeq 2992 . . . . . . . . . . . . . . 15 𝑘( I ‘𝑛 / 𝑘𝐵) = ( I ‘𝑛 / 𝑘𝐶)
10 csbeq1a 3869 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
1110fveq2d 6656 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ( I ‘𝐵) = ( I ‘𝑛 / 𝑘𝐵))
12 csbeq1a 3869 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛𝐶 = 𝑛 / 𝑘𝐶)
1312fveq2d 6656 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ( I ‘𝐶) = ( I ‘𝑛 / 𝑘𝐶))
1411, 13eqeq12d 2838 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (( I ‘𝐵) = ( I ‘𝐶) ↔ ( I ‘𝑛 / 𝑘𝐵) = ( I ‘𝑛 / 𝑘𝐶)))
159, 14rspc 3586 . . . . . . . . . . . . . 14 (𝑛𝐴 → (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ( I ‘𝑛 / 𝑘𝐵) = ( I ‘𝑛 / 𝑘𝐶)))
162, 3, 15sylc 65 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) ∧ 𝑛𝐴) → ( I ‘𝑛 / 𝑘𝐵) = ( I ‘𝑛 / 𝑘𝐶))
1716ifeq1da 4469 . . . . . . . . . . . 12 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → if(𝑛𝐴, ( I ‘𝑛 / 𝑘𝐵), ( I ‘0)) = if(𝑛𝐴, ( I ‘𝑛 / 𝑘𝐶), ( I ‘0)))
18 fvif 6668 . . . . . . . . . . . 12 ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = if(𝑛𝐴, ( I ‘𝑛 / 𝑘𝐵), ( I ‘0))
19 fvif 6668 . . . . . . . . . . . 12 ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)) = if(𝑛𝐴, ( I ‘𝑛 / 𝑘𝐶), ( I ‘0))
2017, 18, 193eqtr4g 2882 . . . . . . . . . . 11 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
2120mpteq2dv 5138 . . . . . . . . . 10 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
2221fveq1d 6654 . . . . . . . . 9 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))‘𝑥))
23 eqid 2822 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
24 eqid 2822 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
2523, 24fvmptex 6764 . . . . . . . . 9 ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))‘𝑥)
26 eqid 2822 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
27 eqid 2822 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
2826, 27fvmptex 6764 . . . . . . . . 9 ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))‘𝑥)
2922, 25, 283eqtr4g 2882 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))‘𝑥))
301, 29seqfeq 13391 . . . . . . 7 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
3130breq1d 5052 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
3231anbi2d 631 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
3332rexbidva 3282 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
34 simplr 768 . . . . . . . . . 10 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℕ)
35 nnuz 12269 . . . . . . . . . 10 ℕ = (ℤ‘1)
3634, 35eleqtrdi 2924 . . . . . . . . 9 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ (ℤ‘1))
37 f1of 6597 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
3837ad2antlr 726 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑓:(1...𝑚)⟶𝐴)
39 ffvelrn 6831 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)⟶𝐴𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
4038, 39sylancom 591 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
41 simplll 774 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶))
42 nfcsb1v 3879 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵)
43 nfcsb1v 3879 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐶)
4442, 43nfeq 2992 . . . . . . . . . . . . 13 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)
45 csbeq1a 3869 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐵))
46 csbeq1a 3869 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐶) = (𝑓𝑥) / 𝑘( I ‘𝐶))
4745, 46eqeq12d 2838 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑥) → (( I ‘𝐵) = ( I ‘𝐶) ↔ (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
4844, 47rspc 3586 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ 𝐴 → (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
4940, 41, 48sylc 65 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶))
50 fvex 6665 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
51 csbfv2g 6696 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
5250, 51ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵)
53 csbfv2g 6696 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
5450, 53ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶)
5549, 52, 543eqtr3g 2880 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ( I ‘(𝑓𝑥) / 𝑘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
56 elfznn 12931 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑚) → 𝑥 ∈ ℕ)
5756adantl 485 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑥 ∈ ℕ)
58 fveq2 6652 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → (𝑓𝑛) = (𝑓𝑥))
5958csbeq1d 3859 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑥) / 𝑘𝐵)
60 eqid 2822 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
6159, 60fvmpti 6749 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
6257, 61syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
6358csbeq1d 3859 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐶 = (𝑓𝑥) / 𝑘𝐶)
64 eqid 2822 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)
6563, 64fvmpti 6749 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
6657, 65syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
6755, 62, 663eqtr4d 2867 . . . . . . . . 9 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥))
6836, 67seqfveq 13390 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
6968eqeq2d 2833 . . . . . . 7 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
7069pm5.32da 582 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7170exbidv 1922 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7271rexbidva 3282 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7333, 72orbi12d 916 . . 3 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
7473iotabidv 6318 . 2 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
75 df-sum 15034 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
76 df-sum 15034 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7774, 75, 763eqtr4g 2882 1 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2114  wral 3130  wrex 3131  Vcvv 3469  csb 3855  wss 3908  ifcif 4439   class class class wbr 5042  cmpt 5122   I cid 5436  cio 6291  wf 6330  1-1-ontowf1o 6333  cfv 6334  (class class class)co 7140  0cc0 10526  1c1 10527   + caddc 10529  cn 11625  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cli 14832  Σcsu 15033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-sum 15034
This theorem is referenced by:  sumeq2  15042  sum2id  15056
  Copyright terms: Public domain W3C validator