MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symdif Structured version   Visualization version   GIF version

Definition df-symdif 4228
Description: Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4236, dfsymdif3 4281 and dfsymdif4 4234. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2csymdif 4227 . 2 class (𝐴𝐵)
41, 2cdif 3923 . . 3 class (𝐴𝐵)
52, 1cdif 3923 . . 3 class (𝐵𝐴)
64, 5cun 3924 . 2 class ((𝐴𝐵) ∪ (𝐵𝐴))
73, 6wceq 1540 1 wff (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  4229  symdifeq1  4230  nfsymdif  4232  elsymdif  4233  difsssymdif  4238  dfsymdif3  4281  symdif0  5061  symdifv  5062  symdifid  5063
  Copyright terms: Public domain W3C validator