MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symdif Structured version   Visualization version   GIF version

Definition df-symdif 4206
Description: Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4214, dfsymdif3 4259 and dfsymdif4 4212. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2csymdif 4205 . 2 class (𝐴𝐵)
41, 2cdif 3902 . . 3 class (𝐴𝐵)
52, 1cdif 3902 . . 3 class (𝐵𝐴)
64, 5cun 3903 . 2 class ((𝐴𝐵) ∪ (𝐵𝐴))
73, 6wceq 1540 1 wff (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  4207  symdifeq1  4208  nfsymdif  4210  elsymdif  4211  difsssymdif  4216  dfsymdif3  4259  symdif0  5037  symdifv  5038  symdifid  5039
  Copyright terms: Public domain W3C validator