MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symdif Structured version   Visualization version   GIF version

Definition df-symdif 4202
Description: Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4210, dfsymdif3 4255 and dfsymdif4 4208. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2csymdif 4201 . 2 class (𝐴𝐵)
41, 2cdif 3895 . . 3 class (𝐴𝐵)
52, 1cdif 3895 . . 3 class (𝐵𝐴)
64, 5cun 3896 . 2 class ((𝐴𝐵) ∪ (𝐵𝐴))
73, 6wceq 1541 1 wff (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  4203  symdifeq1  4204  nfsymdif  4206  elsymdif  4207  difsssymdif  4212  dfsymdif3  4255  symdif0  5035  symdifv  5036  symdifid  5037
  Copyright terms: Public domain W3C validator