MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symdif Structured version   Visualization version   GIF version

Definition df-symdif 3993
Description: Define the symmetric difference of two classes. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2csymdif 3992 . 2 class (𝐴𝐵)
41, 2cdif 3720 . . 3 class (𝐴𝐵)
52, 1cdif 3720 . . 3 class (𝐵𝐴)
64, 5cun 3721 . 2 class ((𝐴𝐵) ∪ (𝐵𝐴))
73, 6wceq 1631 1 wff (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  3994  symdifeq1  3995  nfsymdif  3997  elsymdif  3998  dfsymdif3  4041  symdif0  4731  symdifv  4732  symdifid  4733
  Copyright terms: Public domain W3C validator