Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-symdif | Structured version Visualization version GIF version |
Description: Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4185, dfsymdif3 4231 and dfsymdif4 4183. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
df-symdif | ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | csymdif 4176 | . 2 class (𝐴 △ 𝐵) |
4 | 1, 2 | cdif 3885 | . . 3 class (𝐴 ∖ 𝐵) |
5 | 2, 1 | cdif 3885 | . . 3 class (𝐵 ∖ 𝐴) |
6 | 4, 5 | cun 3886 | . 2 class ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
7 | 3, 6 | wceq 1539 | 1 wff (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: symdifcom 4178 symdifeq1 4179 nfsymdif 4181 elsymdif 4182 difsssymdif 4187 dfsymdif3 4231 symdif0 5015 symdifv 5016 symdifid 5017 |
Copyright terms: Public domain | W3C validator |