MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symdif Structured version   Visualization version   GIF version

Definition df-symdif 4169
Description: Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4177, dfsymdif3 4221 and dfsymdif4 4175. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2csymdif 4168 . 2 class (𝐴𝐵)
41, 2cdif 3878 . . 3 class (𝐴𝐵)
52, 1cdif 3878 . . 3 class (𝐵𝐴)
64, 5cun 3879 . 2 class ((𝐴𝐵) ∪ (𝐵𝐴))
73, 6wceq 1538 1 wff (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  4170  symdifeq1  4171  nfsymdif  4173  elsymdif  4174  difsssymdif  4179  dfsymdif3  4221  symdif0  4970  symdifv  4971  symdifid  4972
  Copyright terms: Public domain W3C validator