Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symdifcom | Structured version Visualization version GIF version |
Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdifcom | ⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4087 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ (𝐴 ∖ 𝐵)) | |
2 | df-symdif 4176 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
3 | df-symdif 4176 | . 2 ⊢ (𝐵 △ 𝐴) = ((𝐵 ∖ 𝐴) ∪ (𝐴 ∖ 𝐵)) | |
4 | 1, 2, 3 | 3eqtr4i 2776 | 1 ⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 ∪ cun 3885 △ csymdif 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-symdif 4176 |
This theorem is referenced by: symdifeq2 4179 |
Copyright terms: Public domain | W3C validator |