MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifcom Structured version   Visualization version   GIF version

Theorem symdifcom 4177
Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifcom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem symdifcom
StepHypRef Expression
1 uncom 4087 . 2 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐴𝐵))
2 df-symdif 4176 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
3 df-symdif 4176 . 2 (𝐵𝐴) = ((𝐵𝐴) ∪ (𝐴𝐵))
41, 2, 33eqtr4i 2776 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885  csymdif 4175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-symdif 4176
This theorem is referenced by:  symdifeq2  4179
  Copyright terms: Public domain W3C validator