![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifcom | Structured version Visualization version GIF version |
Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdifcom | ⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4168 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ (𝐴 ∖ 𝐵)) | |
2 | df-symdif 4259 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
3 | df-symdif 4259 | . 2 ⊢ (𝐵 △ 𝐴) = ((𝐵 ∖ 𝐴) ∪ (𝐴 ∖ 𝐵)) | |
4 | 1, 2, 3 | 3eqtr4i 2773 | 1 ⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3960 ∪ cun 3961 △ csymdif 4258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-symdif 4259 |
This theorem is referenced by: symdifeq2 4262 |
Copyright terms: Public domain | W3C validator |