![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsymdif3 | Structured version Visualization version GIF version |
Description: Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.) |
Ref | Expression |
---|---|
dfsymdif3 | ⊢ (𝐴 △ 𝐵) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difin 4164 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
2 | incom 4105 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
3 | 2 | difeq2i 4023 | . . . 4 ⊢ (𝐵 ∖ (𝐴 ∩ 𝐵)) = (𝐵 ∖ (𝐵 ∩ 𝐴)) |
4 | difin 4164 | . . . 4 ⊢ (𝐵 ∖ (𝐵 ∩ 𝐴)) = (𝐵 ∖ 𝐴) | |
5 | 3, 4 | eqtri 2821 | . . 3 ⊢ (𝐵 ∖ (𝐴 ∩ 𝐵)) = (𝐵 ∖ 𝐴) |
6 | 1, 5 | uneq12i 4064 | . 2 ⊢ ((𝐴 ∖ (𝐴 ∩ 𝐵)) ∪ (𝐵 ∖ (𝐴 ∩ 𝐵))) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
7 | difundir 4183 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) = ((𝐴 ∖ (𝐴 ∩ 𝐵)) ∪ (𝐵 ∖ (𝐴 ∩ 𝐵))) | |
8 | df-symdif 4145 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
9 | 6, 7, 8 | 3eqtr4ri 2832 | 1 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1525 ∖ cdif 3862 ∪ cun 3863 ∩ cin 3864 △ csymdif 4144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-symdif 4145 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |