MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsymdif Structured version   Visualization version   GIF version

Theorem nfsymdif 4239
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
nfsymdif.1 𝑥𝐴
nfsymdif.2 𝑥𝐵
Assertion
Ref Expression
nfsymdif 𝑥(𝐴𝐵)

Proof of Theorem nfsymdif
StepHypRef Expression
1 df-symdif 4235 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
2 nfsymdif.1 . . . 4 𝑥𝐴
3 nfsymdif.2 . . . 4 𝑥𝐵
42, 3nfdif 4111 . . 3 𝑥(𝐴𝐵)
53, 2nfdif 4111 . . 3 𝑥(𝐵𝐴)
64, 5nfun 4152 . 2 𝑥((𝐴𝐵) ∪ (𝐵𝐴))
71, 6nfcxfr 2895 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2882  cdif 3930  cun 3931  csymdif 4234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-v 3466  df-dif 3936  df-un 3938  df-symdif 4235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator