Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsymdif | Structured version Visualization version GIF version |
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
nfsymdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfsymdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfsymdif | ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 4173 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
2 | nfsymdif.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfsymdif.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfdif 4056 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
5 | 3, 2 | nfdif 4056 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ 𝐴) |
6 | 4, 5 | nfun 4095 | . 2 ⊢ Ⅎ𝑥((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
7 | 1, 6 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 ∖ cdif 3880 ∪ cun 3881 △ csymdif 4172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-dif 3886 df-un 3888 df-symdif 4173 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |