| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsymdif | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| nfsymdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsymdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfsymdif | ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symdif 4235 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
| 2 | nfsymdif.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfsymdif.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfdif 4111 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| 5 | 3, 2 | nfdif 4111 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ 𝐴) |
| 6 | 4, 5 | nfun 4152 | . 2 ⊢ Ⅎ𝑥((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
| 7 | 1, 6 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2882 ∖ cdif 3930 ∪ cun 3931 △ csymdif 4234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3466 df-dif 3936 df-un 3938 df-symdif 4235 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |