![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsymdif | Structured version Visualization version GIF version |
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
nfsymdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfsymdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfsymdif | ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 4259 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
2 | nfsymdif.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfsymdif.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfdif 4139 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
5 | 3, 2 | nfdif 4139 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ 𝐴) |
6 | 4, 5 | nfun 4180 | . 2 ⊢ Ⅎ𝑥((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
7 | 1, 6 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ∖ cdif 3960 ∪ cun 3961 △ csymdif 4258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 df-dif 3966 df-un 3968 df-symdif 4259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |