MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsymdif Structured version   Visualization version   GIF version

Theorem nfsymdif 4177
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
nfsymdif.1 𝑥𝐴
nfsymdif.2 𝑥𝐵
Assertion
Ref Expression
nfsymdif 𝑥(𝐴𝐵)

Proof of Theorem nfsymdif
StepHypRef Expression
1 df-symdif 4173 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
2 nfsymdif.1 . . . 4 𝑥𝐴
3 nfsymdif.2 . . . 4 𝑥𝐵
42, 3nfdif 4056 . . 3 𝑥(𝐴𝐵)
53, 2nfdif 4056 . . 3 𝑥(𝐵𝐴)
64, 5nfun 4095 . 2 𝑥((𝐴𝐵) ∪ (𝐵𝐴))
71, 6nfcxfr 2904 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2886  cdif 3880  cun 3881  csymdif 4172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-dif 3886  df-un 3888  df-symdif 4173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator