![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsymdif | Structured version Visualization version GIF version |
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
nfsymdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfsymdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfsymdif | ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 4241 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
2 | nfsymdif.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfsymdif.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfdif 4121 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
5 | 3, 2 | nfdif 4121 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ 𝐴) |
6 | 4, 5 | nfun 4162 | . 2 ⊢ Ⅎ𝑥((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
7 | 1, 6 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝐴 △ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2875 ∖ cdif 3941 ∪ cun 3942 △ csymdif 4240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-v 3463 df-dif 3947 df-un 3949 df-symdif 4241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |