MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsymdif Structured version   Visualization version   GIF version

Theorem nfsymdif 4204
Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
nfsymdif.1 𝑥𝐴
nfsymdif.2 𝑥𝐵
Assertion
Ref Expression
nfsymdif 𝑥(𝐴𝐵)

Proof of Theorem nfsymdif
StepHypRef Expression
1 df-symdif 4200 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
2 nfsymdif.1 . . . 4 𝑥𝐴
3 nfsymdif.2 . . . 4 𝑥𝐵
42, 3nfdif 4076 . . 3 𝑥(𝐴𝐵)
53, 2nfdif 4076 . . 3 𝑥(𝐵𝐴)
64, 5nfun 4117 . 2 𝑥((𝐴𝐵) ∪ (𝐵𝐴))
71, 6nfcxfr 2892 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  cdif 3894  cun 3895  csymdif 4199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-dif 3900  df-un 3902  df-symdif 4200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator