MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifeq1 Structured version   Visualization version   GIF version

Theorem symdifeq1 4183
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifeq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem symdifeq1
StepHypRef Expression
1 difeq1 4054 . . 3 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 difeq2 4055 . . 3 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2uneq12d 4102 . 2 (𝐴 = 𝐵 → ((𝐴𝐶) ∪ (𝐶𝐴)) = ((𝐵𝐶) ∪ (𝐶𝐵)))
4 df-symdif 4181 . 2 (𝐴𝐶) = ((𝐴𝐶) ∪ (𝐶𝐴))
5 df-symdif 4181 . 2 (𝐵𝐶) = ((𝐵𝐶) ∪ (𝐶𝐵))
63, 4, 53eqtr4g 2804 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3888  cun 3889  csymdif 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-symdif 4181
This theorem is referenced by:  symdifeq2  4184
  Copyright terms: Public domain W3C validator