![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdifeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1 4129 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
2 | difeq2 4130 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | uneq12d 4179 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∖ 𝐶) ∪ (𝐶 ∖ 𝐴)) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵))) |
4 | df-symdif 4259 | . 2 ⊢ (𝐴 △ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐶 ∖ 𝐴)) | |
5 | df-symdif 4259 | . 2 ⊢ (𝐵 △ 𝐶) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) | |
6 | 3, 4, 5 | 3eqtr4g 2800 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∖ cdif 3960 ∪ cun 3961 △ csymdif 4258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-symdif 4259 |
This theorem is referenced by: symdifeq2 4262 |
Copyright terms: Public domain | W3C validator |