| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symdifeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| Ref | Expression |
|---|---|
| symdifeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1 4099 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 2 | difeq2 4100 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | uneq12d 4149 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∖ 𝐶) ∪ (𝐶 ∖ 𝐴)) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵))) |
| 4 | df-symdif 4233 | . 2 ⊢ (𝐴 △ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐶 ∖ 𝐴)) | |
| 5 | df-symdif 4233 | . 2 ⊢ (𝐵 △ 𝐶) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) | |
| 6 | 3, 4, 5 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3928 ∪ cun 3929 △ csymdif 4232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-symdif 4233 |
| This theorem is referenced by: symdifeq2 4236 |
| Copyright terms: Public domain | W3C validator |