| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symdifid | Structured version Visualization version GIF version | ||
| Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| symdifid | ⊢ (𝐴 △ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symdif 4202 | . 2 ⊢ (𝐴 △ 𝐴) = ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) | |
| 2 | difid 4325 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 3 | 2, 2 | uneq12i 4115 | . 2 ⊢ ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) = (∅ ∪ ∅) |
| 4 | un0 4343 | . 2 ⊢ (∅ ∪ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2760 | 1 ⊢ (𝐴 △ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ∪ cun 3896 △ csymdif 4201 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-symdif 4202 df-nul 4283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |