![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifid | Structured version Visualization version GIF version |
Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
Ref | Expression |
---|---|
symdifid | ⊢ (𝐴 △ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 4134 | . 2 ⊢ (𝐴 △ 𝐴) = ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) | |
2 | difid 4244 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
3 | 2, 2 | uneq12i 4053 | . 2 ⊢ ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) = (∅ ∪ ∅) |
4 | un0 4258 | . 2 ⊢ (∅ ∪ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2821 | 1 ⊢ (𝐴 △ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1520 ∖ cdif 3851 ∪ cun 3852 △ csymdif 4133 ∅c0 4206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-symdif 4134 df-nul 4207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |