MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifid Structured version   Visualization version   GIF version

Theorem symdifid 5053
Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.)
Assertion
Ref Expression
symdifid (𝐴𝐴) = ∅

Proof of Theorem symdifid
StepHypRef Expression
1 df-symdif 4218 . 2 (𝐴𝐴) = ((𝐴𝐴) ∪ (𝐴𝐴))
2 difid 4341 . . 3 (𝐴𝐴) = ∅
32, 2uneq12i 4131 . 2 ((𝐴𝐴) ∪ (𝐴𝐴)) = (∅ ∪ ∅)
4 un0 4359 . 2 (∅ ∪ ∅) = ∅
51, 3, 43eqtri 2757 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3913  cun 3914  csymdif 4217  c0 4298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-symdif 4218  df-nul 4299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator