| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symdifid | Structured version Visualization version GIF version | ||
| Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| symdifid | ⊢ (𝐴 △ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symdif 4233 | . 2 ⊢ (𝐴 △ 𝐴) = ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) | |
| 2 | difid 4356 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 3 | 2, 2 | uneq12i 4146 | . 2 ⊢ ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) = (∅ ∪ ∅) |
| 4 | un0 4374 | . 2 ⊢ (∅ ∪ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2761 | 1 ⊢ (𝐴 △ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∖ cdif 3928 ∪ cun 3929 △ csymdif 4232 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-symdif 4233 df-nul 4314 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |