![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifid | Structured version Visualization version GIF version |
Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
Ref | Expression |
---|---|
symdifid | ⊢ (𝐴 △ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 4262 | . 2 ⊢ (𝐴 △ 𝐴) = ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) | |
2 | difid 4385 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
3 | 2, 2 | uneq12i 4179 | . 2 ⊢ ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) = (∅ ∪ ∅) |
4 | un0 4403 | . 2 ⊢ (∅ ∪ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2769 | 1 ⊢ (𝐴 △ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3963 ∪ cun 3964 △ csymdif 4261 ∅c0 4342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-symdif 4262 df-nul 4343 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |