MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifid Structured version   Visualization version   GIF version

Theorem symdifid 5035
Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.)
Assertion
Ref Expression
symdifid (𝐴𝐴) = ∅

Proof of Theorem symdifid
StepHypRef Expression
1 df-symdif 4203 . 2 (𝐴𝐴) = ((𝐴𝐴) ∪ (𝐴𝐴))
2 difid 4326 . . 3 (𝐴𝐴) = ∅
32, 2uneq12i 4116 . 2 ((𝐴𝐴) ∪ (𝐴𝐴)) = (∅ ∪ ∅)
4 un0 4344 . 2 (∅ ∪ ∅) = ∅
51, 3, 43eqtri 2758 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3899  cun 3900  csymdif 4202  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-symdif 4203  df-nul 4284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator