MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifid Structured version   Visualization version   GIF version

Theorem symdifid 5095
Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.)
Assertion
Ref Expression
symdifid (𝐴𝐴) = ∅

Proof of Theorem symdifid
StepHypRef Expression
1 df-symdif 4262 . 2 (𝐴𝐴) = ((𝐴𝐴) ∪ (𝐴𝐴))
2 difid 4385 . . 3 (𝐴𝐴) = ∅
32, 2uneq12i 4179 . 2 ((𝐴𝐴) ∪ (𝐴𝐴)) = (∅ ∪ ∅)
4 un0 4403 . 2 (∅ ∪ ∅) = ∅
51, 3, 43eqtri 2769 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3963  cun 3964  csymdif 4261  c0 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-symdif 4262  df-nul 4343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator