| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symdifid | Structured version Visualization version GIF version | ||
| Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| symdifid | ⊢ (𝐴 △ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symdif 4218 | . 2 ⊢ (𝐴 △ 𝐴) = ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) | |
| 2 | difid 4341 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 3 | 2, 2 | uneq12i 4131 | . 2 ⊢ ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) = (∅ ∪ ∅) |
| 4 | un0 4359 | . 2 ⊢ (∅ ∪ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2757 | 1 ⊢ (𝐴 △ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3913 ∪ cun 3914 △ csymdif 4217 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-symdif 4218 df-nul 4299 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |