| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsymdif | Structured version Visualization version GIF version | ||
| Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| elsymdif | ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4133 | . . 3 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ (𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵))) | |
| 2 | eldif 3941 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | eldif 3941 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵)) | |
| 4 | 2, 3 | orbi12i 914 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
| 5 | 1, 4 | bitri 275 | . 2 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
| 6 | df-symdif 4233 | . . 3 ⊢ (𝐵 △ 𝐶) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) | |
| 7 | 6 | eleq2i 2827 | . 2 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ 𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵))) |
| 8 | xor 1016 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) | |
| 9 | 5, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 △ csymdif 4232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-symdif 4233 |
| This theorem is referenced by: dfsymdif4 4239 elsymdifxor 4240 brsymdif 5183 |
| Copyright terms: Public domain | W3C validator |