MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsymdif Structured version   Visualization version   GIF version

Theorem elsymdif 4181
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
elsymdif (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))

Proof of Theorem elsymdif
StepHypRef Expression
1 elun 4083 . . 3 (𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)) ↔ (𝐴 ∈ (𝐵𝐶) ∨ 𝐴 ∈ (𝐶𝐵)))
2 eldif 3897 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
3 eldif 3897 . . . 4 (𝐴 ∈ (𝐶𝐵) ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐵))
42, 3orbi12i 912 . . 3 ((𝐴 ∈ (𝐵𝐶) ∨ 𝐴 ∈ (𝐶𝐵)) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
51, 4bitri 274 . 2 (𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
6 df-symdif 4176 . . 3 (𝐵𝐶) = ((𝐵𝐶) ∪ (𝐶𝐵))
76eleq2i 2830 . 2 (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)))
8 xor 1012 . 2 (¬ (𝐴𝐵𝐴𝐶) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
95, 7, 83bitr4i 303 1 (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  wcel 2106  cdif 3884  cun 3885  csymdif 4175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-symdif 4176
This theorem is referenced by:  dfsymdif4  4182  elsymdifxor  4183  brsymdif  5133
  Copyright terms: Public domain W3C validator