MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsymdif Structured version   Visualization version   GIF version

Theorem elsymdif 4227
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
elsymdif (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))

Proof of Theorem elsymdif
StepHypRef Expression
1 elun 4128 . . 3 (𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)) ↔ (𝐴 ∈ (𝐵𝐶) ∨ 𝐴 ∈ (𝐶𝐵)))
2 eldif 3949 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
3 eldif 3949 . . . 4 (𝐴 ∈ (𝐶𝐵) ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐵))
42, 3orbi12i 911 . . 3 ((𝐴 ∈ (𝐵𝐶) ∨ 𝐴 ∈ (𝐶𝐵)) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
51, 4bitri 277 . 2 (𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
6 df-symdif 4222 . . 3 (𝐵𝐶) = ((𝐵𝐶) ∪ (𝐶𝐵))
76eleq2i 2907 . 2 (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)))
8 xor 1011 . 2 (¬ (𝐴𝐵𝐴𝐶) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
95, 7, 83bitr4i 305 1 (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843  wcel 2113  cdif 3936  cun 3937  csymdif 4221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-v 3499  df-dif 3942  df-un 3944  df-symdif 4222
This theorem is referenced by:  dfsymdif4  4228  elsymdifxor  4229  brsymdif  5128
  Copyright terms: Public domain W3C validator