![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsymdif | Structured version Visualization version GIF version |
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
elsymdif | ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4176 | . . 3 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ (𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵))) | |
2 | eldif 3986 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | eldif 3986 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵)) | |
4 | 2, 3 | orbi12i 913 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
5 | 1, 4 | bitri 275 | . 2 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
6 | df-symdif 4272 | . . 3 ⊢ (𝐵 △ 𝐶) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) | |
7 | 6 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ 𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵))) |
8 | xor 1015 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) | |
9 | 5, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 △ csymdif 4271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-symdif 4272 |
This theorem is referenced by: dfsymdif4 4278 elsymdifxor 4279 brsymdif 5225 |
Copyright terms: Public domain | W3C validator |