Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsymdif | Structured version Visualization version GIF version |
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
elsymdif | ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4083 | . . 3 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ (𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵))) | |
2 | eldif 3897 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | eldif 3897 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵)) | |
4 | 2, 3 | orbi12i 912 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
5 | 1, 4 | bitri 274 | . 2 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
6 | df-symdif 4176 | . . 3 ⊢ (𝐵 △ 𝐶) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) | |
7 | 6 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ 𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵))) |
8 | xor 1012 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) | |
9 | 5, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 △ csymdif 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-symdif 4176 |
This theorem is referenced by: dfsymdif4 4182 elsymdifxor 4183 brsymdif 5133 |
Copyright terms: Public domain | W3C validator |