![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsymdif | Structured version Visualization version GIF version |
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
elsymdif | ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4046 | . . 3 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ (𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵))) | |
2 | eldif 3869 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | eldif 3869 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵)) | |
4 | 2, 3 | orbi12i 909 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
5 | 1, 4 | bitri 276 | . 2 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
6 | df-symdif 4139 | . . 3 ⊢ (𝐵 △ 𝐶) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) | |
7 | 6 | eleq2i 2874 | . 2 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ 𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵))) |
8 | xor 1009 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) | |
9 | 5, 7, 8 | 3bitr4i 304 | 1 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∧ wa 396 ∨ wo 842 ∈ wcel 2081 ∖ cdif 3856 ∪ cun 3857 △ csymdif 4138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-dif 3862 df-un 3864 df-symdif 4139 |
This theorem is referenced by: dfsymdif4 4145 elsymdifxor 4146 brsymdif 5021 |
Copyright terms: Public domain | W3C validator |