MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdif0 Structured version   Visualization version   GIF version

Theorem symdif0 5052
Description: Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdif0 (𝐴 △ ∅) = 𝐴

Proof of Theorem symdif0
StepHypRef Expression
1 df-symdif 4219 . 2 (𝐴 △ ∅) = ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴))
2 dif0 4344 . . 3 (𝐴 ∖ ∅) = 𝐴
3 0dif 4371 . . 3 (∅ ∖ 𝐴) = ∅
42, 3uneq12i 4132 . 2 ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴)) = (𝐴 ∪ ∅)
5 un0 4360 . 2 (𝐴 ∪ ∅) = 𝐴
61, 4, 53eqtri 2757 1 (𝐴 △ ∅) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3914  cun 3915  csymdif 4218  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-symdif 4219  df-nul 4300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator