Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symdif0 | Structured version Visualization version GIF version |
Description: Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdif0 | ⊢ (𝐴 △ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 4173 | . 2 ⊢ (𝐴 △ ∅) = ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴)) | |
2 | dif0 4303 | . . 3 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
3 | 0dif 4332 | . . 3 ⊢ (∅ ∖ 𝐴) = ∅ | |
4 | 2, 3 | uneq12i 4091 | . 2 ⊢ ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴)) = (𝐴 ∪ ∅) |
5 | un0 4321 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 1, 4, 5 | 3eqtri 2770 | 1 ⊢ (𝐴 △ ∅) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∪ cun 3881 △ csymdif 4172 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |