MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdif0 Structured version   Visualization version   GIF version

Theorem symdif0 5078
Description: Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdif0 (𝐴 △ ∅) = 𝐴

Proof of Theorem symdif0
StepHypRef Expression
1 df-symdif 4234 . 2 (𝐴 △ ∅) = ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴))
2 dif0 4364 . . 3 (𝐴 ∖ ∅) = 𝐴
3 0dif 4393 . . 3 (∅ ∖ 𝐴) = ∅
42, 3uneq12i 4153 . 2 ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴)) = (𝐴 ∪ ∅)
5 un0 4382 . 2 (𝐴 ∪ ∅) = 𝐴
61, 4, 53eqtri 2756 1 (𝐴 △ ∅) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cdif 3937  cun 3938  csymdif 4233  c0 4314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-symdif 4234  df-nul 4315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator