MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdif0 Structured version   Visualization version   GIF version

Theorem symdif0 5014
Description: Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdif0 (𝐴 △ ∅) = 𝐴

Proof of Theorem symdif0
StepHypRef Expression
1 df-symdif 4176 . 2 (𝐴 △ ∅) = ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴))
2 dif0 4306 . . 3 (𝐴 ∖ ∅) = 𝐴
3 0dif 4335 . . 3 (∅ ∖ 𝐴) = ∅
42, 3uneq12i 4095 . 2 ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴)) = (𝐴 ∪ ∅)
5 un0 4324 . 2 (𝐴 ∪ ∅) = 𝐴
61, 4, 53eqtri 2770 1 (𝐴 △ ∅) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885  csymdif 4175  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator