MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdif0 Structured version   Visualization version   GIF version

Theorem symdif0 5090
Description: Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdif0 (𝐴 △ ∅) = 𝐴

Proof of Theorem symdif0
StepHypRef Expression
1 df-symdif 4259 . 2 (𝐴 △ ∅) = ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴))
2 dif0 4384 . . 3 (𝐴 ∖ ∅) = 𝐴
3 0dif 4411 . . 3 (∅ ∖ 𝐴) = ∅
42, 3uneq12i 4176 . 2 ((𝐴 ∖ ∅) ∪ (∅ ∖ 𝐴)) = (𝐴 ∪ ∅)
5 un0 4400 . 2 (𝐴 ∪ ∅) = 𝐴
61, 4, 53eqtri 2767 1 (𝐴 △ ∅) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3960  cun 3961  csymdif 4258  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-symdif 4259  df-nul 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator