Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symdifv | Structured version Visualization version GIF version |
Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdifv | ⊢ (𝐴 △ V) = (V ∖ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 4176 | . 2 ⊢ (𝐴 △ V) = ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) | |
2 | ssv 3945 | . . . . 5 ⊢ 𝐴 ⊆ V | |
3 | ssdif0 4297 | . . . . 5 ⊢ (𝐴 ⊆ V ↔ (𝐴 ∖ V) = ∅) | |
4 | 2, 3 | mpbi 229 | . . . 4 ⊢ (𝐴 ∖ V) = ∅ |
5 | 4 | uneq1i 4093 | . . 3 ⊢ ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (∅ ∪ (V ∖ 𝐴)) |
6 | uncom 4087 | . . . 4 ⊢ (∅ ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ ∅) | |
7 | un0 4324 | . . . 4 ⊢ ((V ∖ 𝐴) ∪ ∅) = (V ∖ 𝐴) | |
8 | 6, 7 | eqtri 2766 | . . 3 ⊢ (∅ ∪ (V ∖ 𝐴)) = (V ∖ 𝐴) |
9 | 5, 8 | eqtri 2766 | . 2 ⊢ ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (V ∖ 𝐴) |
10 | 1, 9 | eqtri 2766 | 1 ⊢ (𝐴 △ V) = (V ∖ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 △ csymdif 4175 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |