MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifv Structured version   Visualization version   GIF version

Theorem symdifv 5088
Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifv (𝐴 △ V) = (V ∖ 𝐴)

Proof of Theorem symdifv
StepHypRef Expression
1 df-symdif 4241 . 2 (𝐴 △ V) = ((𝐴 ∖ V) ∪ (V ∖ 𝐴))
2 ssv 4005 . . . . 5 𝐴 ⊆ V
3 ssdif0 4362 . . . . 5 (𝐴 ⊆ V ↔ (𝐴 ∖ V) = ∅)
42, 3mpbi 229 . . . 4 (𝐴 ∖ V) = ∅
54uneq1i 4158 . . 3 ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (∅ ∪ (V ∖ 𝐴))
6 uncom 4152 . . . 4 (∅ ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ ∅)
7 un0 4389 . . . 4 ((V ∖ 𝐴) ∪ ∅) = (V ∖ 𝐴)
86, 7eqtri 2758 . . 3 (∅ ∪ (V ∖ 𝐴)) = (V ∖ 𝐴)
95, 8eqtri 2758 . 2 ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (V ∖ 𝐴)
101, 9eqtri 2758 1 (𝐴 △ V) = (V ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3472  cdif 3944  cun 3945  wss 3947  csymdif 4240  c0 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4241  df-nul 4322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator