MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifv Structured version   Visualization version   GIF version

Theorem symdifv 4971
Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifv (𝐴 △ V) = (V ∖ 𝐴)

Proof of Theorem symdifv
StepHypRef Expression
1 df-symdif 4169 . 2 (𝐴 △ V) = ((𝐴 ∖ V) ∪ (V ∖ 𝐴))
2 ssv 3939 . . . . 5 𝐴 ⊆ V
3 ssdif0 4277 . . . . 5 (𝐴 ⊆ V ↔ (𝐴 ∖ V) = ∅)
42, 3mpbi 233 . . . 4 (𝐴 ∖ V) = ∅
54uneq1i 4086 . . 3 ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (∅ ∪ (V ∖ 𝐴))
6 uncom 4080 . . . 4 (∅ ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ ∅)
7 un0 4298 . . . 4 ((V ∖ 𝐴) ∪ ∅) = (V ∖ 𝐴)
86, 7eqtri 2821 . . 3 (∅ ∪ (V ∖ 𝐴)) = (V ∖ 𝐴)
95, 8eqtri 2821 . 2 ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (V ∖ 𝐴)
101, 9eqtri 2821 1 (𝐴 △ V) = (V ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3441  cdif 3878  cun 3879  wss 3881  csymdif 4168  c0 4243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-symdif 4169  df-nul 4244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator