MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifv Structured version   Visualization version   GIF version

Theorem symdifv 5032
Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifv (𝐴 △ V) = (V ∖ 𝐴)

Proof of Theorem symdifv
StepHypRef Expression
1 df-symdif 4200 . 2 (𝐴 △ V) = ((𝐴 ∖ V) ∪ (V ∖ 𝐴))
2 ssv 3954 . . . . 5 𝐴 ⊆ V
3 ssdif0 4313 . . . . 5 (𝐴 ⊆ V ↔ (𝐴 ∖ V) = ∅)
42, 3mpbi 230 . . . 4 (𝐴 ∖ V) = ∅
54uneq1i 4111 . . 3 ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (∅ ∪ (V ∖ 𝐴))
6 uncom 4105 . . . 4 (∅ ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ ∅)
7 un0 4341 . . . 4 ((V ∖ 𝐴) ∪ ∅) = (V ∖ 𝐴)
86, 7eqtri 2754 . . 3 (∅ ∪ (V ∖ 𝐴)) = (V ∖ 𝐴)
95, 8eqtri 2754 . 2 ((𝐴 ∖ V) ∪ (V ∖ 𝐴)) = (V ∖ 𝐴)
101, 9eqtri 2754 1 (𝐴 △ V) = (V ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  cun 3895  wss 3897  csymdif 4199  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-symdif 4200  df-nul 4281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator