|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfsymdif4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) | 
| Ref | Expression | 
|---|---|
| dfsymdif4 | ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elsymdif 4257 | . 2 ⊢ (𝑥 ∈ (𝐴 △ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | eqabi 2876 | 1 ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2713 △ csymdif 4251 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-dif 3953 df-un 3955 df-symdif 4252 | 
| This theorem is referenced by: mbfeqalem1 25677 | 
| Copyright terms: Public domain | W3C validator |