Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfsymdif4 | Structured version Visualization version GIF version |
Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) |
Ref | Expression |
---|---|
dfsymdif4 | ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsymdif 4178 | . 2 ⊢ (𝑥 ∈ (𝐴 △ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | abbi2i 2878 | 1 ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 △ csymdif 4172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-symdif 4173 |
This theorem is referenced by: mbfeqalem1 24710 |
Copyright terms: Public domain | W3C validator |