MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsymdif4 Structured version   Visualization version   GIF version

Theorem dfsymdif4 4206
Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.)
Assertion
Ref Expression
dfsymdif4 (𝐴𝐵) = {𝑥 ∣ ¬ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfsymdif4
StepHypRef Expression
1 elsymdif 4205 . 2 (𝑥 ∈ (𝐴𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
21eqabi 2866 1 (𝐴𝐵) = {𝑥 ∣ ¬ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  {cab 2709  csymdif 4199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-symdif 4200
This theorem is referenced by:  mbfeqalem1  25569
  Copyright terms: Public domain W3C validator