MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsymdif4 Structured version   Visualization version   GIF version

Theorem dfsymdif4 4179
Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.)
Assertion
Ref Expression
dfsymdif4 (𝐴𝐵) = {𝑥 ∣ ¬ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfsymdif4
StepHypRef Expression
1 elsymdif 4178 . 2 (𝑥 ∈ (𝐴𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
21abbi2i 2878 1 (𝐴𝐵) = {𝑥 ∣ ¬ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2108  {cab 2715  csymdif 4172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-symdif 4173
This theorem is referenced by:  mbfeqalem1  24710
  Copyright terms: Public domain W3C validator