| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsymdif4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) |
| Ref | Expression |
|---|---|
| dfsymdif4 | ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdif 4205 | . 2 ⊢ (𝑥 ∈ (𝐴 △ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | eqabi 2866 | 1 ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 △ csymdif 4199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-symdif 4200 |
| This theorem is referenced by: mbfeqalem1 25569 |
| Copyright terms: Public domain | W3C validator |