MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsssymdif Structured version   Visualization version   GIF version

Theorem difsssymdif 4262
Description: The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.)
Assertion
Ref Expression
difsssymdif (𝐴𝐵) ⊆ (𝐴𝐵)

Proof of Theorem difsssymdif
StepHypRef Expression
1 ssun1 4177 . 2 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ (𝐵𝐴))
2 df-symdif 4252 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
31, 2sseqtrri 4032 1 (𝐴𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  cdif 3947  cun 3948  wss 3950  csymdif 4251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-ss 3967  df-symdif 4252
This theorem is referenced by:  difsymssdifssd  4263
  Copyright terms: Public domain W3C validator