MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsssymdif Structured version   Visualization version   GIF version

Theorem difsssymdif 4186
Description: The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.)
Assertion
Ref Expression
difsssymdif (𝐴𝐵) ⊆ (𝐴𝐵)

Proof of Theorem difsssymdif
StepHypRef Expression
1 ssun1 4106 . 2 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ (𝐵𝐴))
2 df-symdif 4176 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
31, 2sseqtrri 3958 1 (𝐴𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  cdif 3884  cun 3885  wss 3887  csymdif 4175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176
This theorem is referenced by:  difsymssdifssd  4187
  Copyright terms: Public domain W3C validator