Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsssymdif | Structured version Visualization version GIF version |
Description: The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
Ref | Expression |
---|---|
difsssymdif | ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4102 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
2 | df-symdif 4173 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
3 | 1, 2 | sseqtrri 3954 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 △ csymdif 4172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 |
This theorem is referenced by: difsymssdifssd 4184 |
Copyright terms: Public domain | W3C validator |