MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsssymdif Structured version   Visualization version   GIF version

Theorem difsssymdif 4243
Description: The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.)
Assertion
Ref Expression
difsssymdif (𝐴𝐵) ⊆ (𝐴𝐵)

Proof of Theorem difsssymdif
StepHypRef Expression
1 ssun1 4158 . 2 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ (𝐵𝐴))
2 df-symdif 4233 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
31, 2sseqtrri 4013 1 (𝐴𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  cdif 3928  cun 3929  wss 3931  csymdif 4232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-ss 3948  df-symdif 4233
This theorem is referenced by:  difsymssdifssd  4244
  Copyright terms: Public domain W3C validator