![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsssymdif | Structured version Visualization version GIF version |
Description: The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
Ref | Expression |
---|---|
difsssymdif | ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
2 | df-symdif 4272 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 △ csymdif 4271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-symdif 4272 |
This theorem is referenced by: difsymssdifssd 4283 |
Copyright terms: Public domain | W3C validator |