![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsssymdif | Structured version Visualization version GIF version |
Description: The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
Ref | Expression |
---|---|
difsssymdif | ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4164 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
2 | df-symdif 4234 | . 2 ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | |
3 | 1, 2 | sseqtrri 4011 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3937 ∪ cun 3938 ⊆ wss 3940 △ csymdif 4233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3945 df-in 3947 df-ss 3957 df-symdif 4234 |
This theorem is referenced by: difsymssdifssd 4245 |
Copyright terms: Public domain | W3C validator |