![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsymdif2 | Structured version Visualization version GIF version |
Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.) |
Ref | Expression |
---|---|
dfsymdif2 | ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsymdifxor 4250 | . 2 ⊢ (𝑥 ∈ (𝐴 △ 𝐵) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)) | |
2 | 1 | eqabi 2870 | 1 ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: ⊻ wxo 1510 = wceq 1542 ∈ wcel 2107 {cab 2710 △ csymdif 4242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-xor 1511 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 df-symdif 4243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |