|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfsymdif2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| dfsymdif2 | ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elsymdifxor 4260 | . 2 ⊢ (𝑥 ∈ (𝐴 △ 𝐵) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | eqabi 2877 | 1 ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊻ wxo 1511 = wceq 1540 ∈ wcel 2108 {cab 2714 △ csymdif 4252 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-xor 1512 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-un 3956 df-symdif 4253 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |