MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsymdif2 Structured version   Visualization version   GIF version

Theorem dfsymdif2 4184
Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.)
Assertion
Ref Expression
dfsymdif2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfsymdif2
StepHypRef Expression
1 elsymdifxor 4183 . 2 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21abbi2i 2879 1 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wxo 1506   = wceq 1539  wcel 2106  {cab 2715  csymdif 4175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-xor 1507  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-symdif 4176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator