MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgpasch Structured version   Visualization version   GIF version

Theorem axtgpasch 28475
Description: Axiom of (Inner) Pasch, Axiom A7 of [Schwabhauser] p. 12. Given triangle 𝑋𝑌𝑍, point 𝑈 in segment 𝑋𝑍, and point 𝑉 in segment 𝑌𝑍, there exists a point 𝑎 on both the segment 𝑈𝑌 and the segment 𝑉𝑋. This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of [Tarski1999] p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of [Schwabhauser] p. 69 and the brief discussion in axiom 7.1 of [Tarski1999] p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgpasch.1 (𝜑𝑋𝑃)
axtgpasch.2 (𝜑𝑌𝑃)
axtgpasch.3 (𝜑𝑍𝑃)
axtgpasch.4 (𝜑𝑈𝑃)
axtgpasch.5 (𝜑𝑉𝑃)
axtgpasch.6 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
axtgpasch.7 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
axtgpasch (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Distinct variable groups:   𝐼,𝑎   𝑃,𝑎   𝑈,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝑉,𝑎   ,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐺(𝑎)

Proof of Theorem axtgpasch
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgpasch.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
2 axtgpasch.7 . 2 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
3 df-trkg 28461 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
4 inss1 4237 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
5 inss2 4238 . . . . . . . 8 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
64, 5sstri 3993 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
73, 6eqsstri 4030 . . . . . 6 TarskiG ⊆ TarskiGB
8 axtrkg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
97, 8sselid 3981 . . . . 5 (𝜑𝐺 ∈ TarskiGB)
10 axtrkg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
11 axtrkg.d . . . . . . . 8 = (dist‘𝐺)
12 axtrkg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
1310, 11, 12istrkgb 28463 . . . . . . 7 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1413simprbi 496 . . . . . 6 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1514simp2d 1144 . . . . 5 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
169, 15syl 17 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
17 axtgpasch.1 . . . . 5 (𝜑𝑋𝑃)
18 axtgpasch.2 . . . . 5 (𝜑𝑌𝑃)
19 axtgpasch.3 . . . . 5 (𝜑𝑍𝑃)
20 oveq1 7438 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2120eleq2d 2827 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑧)))
2221anbi1d 631 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧))))
23 oveq2 7439 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑣𝐼𝑥) = (𝑣𝐼𝑋))
2423eleq2d 2827 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑎 ∈ (𝑣𝐼𝑥) ↔ 𝑎 ∈ (𝑣𝐼𝑋)))
2524anbi2d 630 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2625rexbidv 3179 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2722, 26imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
28272ralbidv 3221 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
29 oveq1 7438 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
3029eleq2d 2827 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑣 ∈ (𝑦𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑧)))
3130anbi2d 630 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧))))
32 oveq2 7439 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑢𝐼𝑦) = (𝑢𝐼𝑌))
3332eleq2d 2827 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑎 ∈ (𝑢𝐼𝑦) ↔ 𝑎 ∈ (𝑢𝐼𝑌)))
3433anbi1d 631 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3534rexbidv 3179 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3631, 35imbi12d 344 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
37362ralbidv 3221 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
38 oveq2 7439 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
3938eleq2d 2827 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑋𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑍)))
40 oveq2 7439 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
4140eleq2d 2827 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑣 ∈ (𝑌𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑍)))
4239, 41anbi12d 632 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
4342imbi1d 341 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
44432ralbidv 3221 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4528, 37, 44rspc3v 3638 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4617, 18, 19, 45syl3anc 1373 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4716, 46mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
48 axtgpasch.4 . . . 4 (𝜑𝑈𝑃)
49 axtgpasch.5 . . . 4 (𝜑𝑉𝑃)
50 eleq1 2829 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑍) ↔ 𝑈 ∈ (𝑋𝐼𝑍)))
5150anbi1d 631 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
52 oveq1 7438 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝐼𝑌) = (𝑈𝐼𝑌))
5352eleq2d 2827 . . . . . . . 8 (𝑢 = 𝑈 → (𝑎 ∈ (𝑢𝐼𝑌) ↔ 𝑎 ∈ (𝑈𝐼𝑌)))
5453anbi1d 631 . . . . . . 7 (𝑢 = 𝑈 → ((𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5554rexbidv 3179 . . . . . 6 (𝑢 = 𝑈 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5651, 55imbi12d 344 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
57 eleq1 2829 . . . . . . 7 (𝑣 = 𝑉 → (𝑣 ∈ (𝑌𝐼𝑍) ↔ 𝑉 ∈ (𝑌𝐼𝑍)))
5857anbi2d 630 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍))))
59 oveq1 7438 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑣𝐼𝑋) = (𝑉𝐼𝑋))
6059eleq2d 2827 . . . . . . . 8 (𝑣 = 𝑉 → (𝑎 ∈ (𝑣𝐼𝑋) ↔ 𝑎 ∈ (𝑉𝐼𝑋)))
6160anbi2d 630 . . . . . . 7 (𝑣 = 𝑉 → ((𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6261rexbidv 3179 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6358, 62imbi12d 344 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6456, 63rspc2v 3633 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6548, 49, 64syl2anc 584 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6647, 65mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
671, 2, 66mp2and 699 1 (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  [wsbc 3788  cdif 3948  cin 3950  𝒫 cpw 4600  {csn 4626  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  TarskiGCcstrkgc 28436  TarskiGBcstrkgb 28437  TarskiGCBcstrkgcb 28438  Itvcitv 28441  LineGclng 28442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-trkgb 28457  df-trkg 28461
This theorem is referenced by:  tgbtwncom  28496  tgbtwnswapid  28500  tgbtwnintr  28501  tgtrisegint  28507  tgbtwnconn1  28583  midexlem  28700  opphllem  28743  opphllem1  28755  outpasch  28763  hlpasch  28764  lnopp2hpgb  28771  f1otrg  28879
  Copyright terms: Public domain W3C validator