MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgpasch Structured version   Visualization version   GIF version

Theorem axtgpasch 27985
Description: Axiom of (Inner) Pasch, Axiom A7 of [Schwabhauser] p. 12. Given triangle π‘‹π‘Œπ‘, point π‘ˆ in segment 𝑋𝑍, and point 𝑉 in segment π‘Œπ‘, there exists a point π‘Ž on both the segment π‘ˆπ‘Œ and the segment 𝑉𝑋. This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of [Tarski1999] p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of [Schwabhauser] p. 69 and the brief discussion in axiom 7.1 of [Tarski1999] p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Baseβ€˜πΊ)
axtrkg.d βˆ’ = (distβ€˜πΊ)
axtrkg.i 𝐼 = (Itvβ€˜πΊ)
axtrkg.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
axtgpasch.1 (πœ‘ β†’ 𝑋 ∈ 𝑃)
axtgpasch.2 (πœ‘ β†’ π‘Œ ∈ 𝑃)
axtgpasch.3 (πœ‘ β†’ 𝑍 ∈ 𝑃)
axtgpasch.4 (πœ‘ β†’ π‘ˆ ∈ 𝑃)
axtgpasch.5 (πœ‘ β†’ 𝑉 ∈ 𝑃)
axtgpasch.6 (πœ‘ β†’ π‘ˆ ∈ (𝑋𝐼𝑍))
axtgpasch.7 (πœ‘ β†’ 𝑉 ∈ (π‘ŒπΌπ‘))
Assertion
Ref Expression
axtgpasch (πœ‘ β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋)))
Distinct variable groups:   𝐼,π‘Ž   𝑃,π‘Ž   π‘ˆ,π‘Ž   𝑋,π‘Ž   π‘Œ,π‘Ž   𝑍,π‘Ž   𝑉,π‘Ž   βˆ’ ,π‘Ž
Allowed substitution hints:   πœ‘(π‘Ž)   𝐺(π‘Ž)

Proof of Theorem axtgpasch
Dummy variables 𝑓 𝑖 𝑝 π‘₯ 𝑦 𝑧 𝑏 𝑣 𝑠 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgpasch.6 . 2 (πœ‘ β†’ π‘ˆ ∈ (𝑋𝐼𝑍))
2 axtgpasch.7 . 2 (πœ‘ β†’ 𝑉 ∈ (π‘ŒπΌπ‘))
3 df-trkg 27971 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}))
4 inss1 4227 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† (TarskiGC ∩ TarskiGB)
5 inss2 4228 . . . . . . . 8 (TarskiGC ∩ TarskiGB) βŠ† TarskiGB
64, 5sstri 3990 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† TarskiGB
73, 6eqsstri 4015 . . . . . 6 TarskiG βŠ† TarskiGB
8 axtrkg.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ TarskiG)
97, 8sselid 3979 . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiGB)
10 axtrkg.p . . . . . . . 8 𝑃 = (Baseβ€˜πΊ)
11 axtrkg.d . . . . . . . 8 βˆ’ = (distβ€˜πΊ)
12 axtrkg.i . . . . . . . 8 𝐼 = (Itvβ€˜πΊ)
1310, 11, 12istrkgb 27973 . . . . . . 7 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) ∧ βˆ€π‘  ∈ 𝒫 π‘ƒβˆ€π‘‘ ∈ 𝒫 𝑃(βˆƒπ‘Ž ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘ŽπΌπ‘¦) β†’ βˆƒπ‘ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯𝐼𝑦)))))
1413simprbi 495 . . . . . 6 (𝐺 ∈ TarskiGB β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) ∧ βˆ€π‘  ∈ 𝒫 π‘ƒβˆ€π‘‘ ∈ 𝒫 𝑃(βˆƒπ‘Ž ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘ŽπΌπ‘¦) β†’ βˆƒπ‘ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯𝐼𝑦))))
1514simp2d 1141 . . . . 5 (𝐺 ∈ TarskiGB β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))))
169, 15syl 17 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))))
17 axtgpasch.1 . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝑃)
18 axtgpasch.2 . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑃)
19 axtgpasch.3 . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑃)
20 oveq1 7418 . . . . . . . . . 10 (π‘₯ = 𝑋 β†’ (π‘₯𝐼𝑧) = (𝑋𝐼𝑧))
2120eleq2d 2817 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (𝑒 ∈ (π‘₯𝐼𝑧) ↔ 𝑒 ∈ (𝑋𝐼𝑧)))
2221anbi1d 628 . . . . . . . 8 (π‘₯ = 𝑋 β†’ ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧))))
23 oveq2 7419 . . . . . . . . . . 11 (π‘₯ = 𝑋 β†’ (𝑣𝐼π‘₯) = (𝑣𝐼𝑋))
2423eleq2d 2817 . . . . . . . . . 10 (π‘₯ = 𝑋 β†’ (π‘Ž ∈ (𝑣𝐼π‘₯) ↔ π‘Ž ∈ (𝑣𝐼𝑋)))
2524anbi2d 627 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ ((π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯)) ↔ (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋))))
2625rexbidv 3176 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯)) ↔ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋))))
2722, 26imbi12d 343 . . . . . . 7 (π‘₯ = 𝑋 β†’ (((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) ↔ ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
28272ralbidv 3216 . . . . . 6 (π‘₯ = 𝑋 β†’ (βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) ↔ βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
29 oveq1 7418 . . . . . . . . . 10 (𝑦 = π‘Œ β†’ (𝑦𝐼𝑧) = (π‘ŒπΌπ‘§))
3029eleq2d 2817 . . . . . . . . 9 (𝑦 = π‘Œ β†’ (𝑣 ∈ (𝑦𝐼𝑧) ↔ 𝑣 ∈ (π‘ŒπΌπ‘§)))
3130anbi2d 627 . . . . . . . 8 (𝑦 = π‘Œ β†’ ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (π‘ŒπΌπ‘§))))
32 oveq2 7419 . . . . . . . . . . 11 (𝑦 = π‘Œ β†’ (𝑒𝐼𝑦) = (π‘’πΌπ‘Œ))
3332eleq2d 2817 . . . . . . . . . 10 (𝑦 = π‘Œ β†’ (π‘Ž ∈ (𝑒𝐼𝑦) ↔ π‘Ž ∈ (π‘’πΌπ‘Œ)))
3433anbi1d 628 . . . . . . . . 9 (𝑦 = π‘Œ β†’ ((π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋)) ↔ (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))))
3534rexbidv 3176 . . . . . . . 8 (𝑦 = π‘Œ β†’ (βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋)) ↔ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))))
3631, 35imbi12d 343 . . . . . . 7 (𝑦 = π‘Œ β†’ (((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) ↔ ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (π‘ŒπΌπ‘§)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
37362ralbidv 3216 . . . . . 6 (𝑦 = π‘Œ β†’ (βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) ↔ βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (π‘ŒπΌπ‘§)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
38 oveq2 7419 . . . . . . . . . 10 (𝑧 = 𝑍 β†’ (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
3938eleq2d 2817 . . . . . . . . 9 (𝑧 = 𝑍 β†’ (𝑒 ∈ (𝑋𝐼𝑧) ↔ 𝑒 ∈ (𝑋𝐼𝑍)))
40 oveq2 7419 . . . . . . . . . 10 (𝑧 = 𝑍 β†’ (π‘ŒπΌπ‘§) = (π‘ŒπΌπ‘))
4140eleq2d 2817 . . . . . . . . 9 (𝑧 = 𝑍 β†’ (𝑣 ∈ (π‘ŒπΌπ‘§) ↔ 𝑣 ∈ (π‘ŒπΌπ‘)))
4239, 41anbi12d 629 . . . . . . . 8 (𝑧 = 𝑍 β†’ ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (π‘ŒπΌπ‘§)) ↔ (𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘))))
4342imbi1d 340 . . . . . . 7 (𝑧 = 𝑍 β†’ (((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (π‘ŒπΌπ‘§)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) ↔ ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
44432ralbidv 3216 . . . . . 6 (𝑧 = 𝑍 β†’ (βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (π‘ŒπΌπ‘§)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) ↔ βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
4528, 37, 44rspc3v 3626 . . . . 5 ((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) β†’ βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
4617, 18, 19, 45syl3anc 1369 . . . 4 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) β†’ βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
4716, 46mpd 15 . . 3 (πœ‘ β†’ βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))))
48 axtgpasch.4 . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑃)
49 axtgpasch.5 . . . 4 (πœ‘ β†’ 𝑉 ∈ 𝑃)
50 eleq1 2819 . . . . . . 7 (𝑒 = π‘ˆ β†’ (𝑒 ∈ (𝑋𝐼𝑍) ↔ π‘ˆ ∈ (𝑋𝐼𝑍)))
5150anbi1d 628 . . . . . 6 (𝑒 = π‘ˆ β†’ ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) ↔ (π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘))))
52 oveq1 7418 . . . . . . . . 9 (𝑒 = π‘ˆ β†’ (π‘’πΌπ‘Œ) = (π‘ˆπΌπ‘Œ))
5352eleq2d 2817 . . . . . . . 8 (𝑒 = π‘ˆ β†’ (π‘Ž ∈ (π‘’πΌπ‘Œ) ↔ π‘Ž ∈ (π‘ˆπΌπ‘Œ)))
5453anbi1d 628 . . . . . . 7 (𝑒 = π‘ˆ β†’ ((π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)) ↔ (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))))
5554rexbidv 3176 . . . . . 6 (𝑒 = π‘ˆ β†’ (βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)) ↔ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))))
5651, 55imbi12d 343 . . . . 5 (𝑒 = π‘ˆ β†’ (((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) ↔ ((π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)))))
57 eleq1 2819 . . . . . . 7 (𝑣 = 𝑉 β†’ (𝑣 ∈ (π‘ŒπΌπ‘) ↔ 𝑉 ∈ (π‘ŒπΌπ‘)))
5857anbi2d 627 . . . . . 6 (𝑣 = 𝑉 β†’ ((π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) ↔ (π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (π‘ŒπΌπ‘))))
59 oveq1 7418 . . . . . . . . 9 (𝑣 = 𝑉 β†’ (𝑣𝐼𝑋) = (𝑉𝐼𝑋))
6059eleq2d 2817 . . . . . . . 8 (𝑣 = 𝑉 β†’ (π‘Ž ∈ (𝑣𝐼𝑋) ↔ π‘Ž ∈ (𝑉𝐼𝑋)))
6160anbi2d 627 . . . . . . 7 (𝑣 = 𝑉 β†’ ((π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)) ↔ (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋))))
6261rexbidv 3176 . . . . . 6 (𝑣 = 𝑉 β†’ (βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋)) ↔ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋))))
6358, 62imbi12d 343 . . . . 5 (𝑣 = 𝑉 β†’ (((π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) ↔ ((π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋)))))
6456, 63rspc2v 3621 . . . 4 ((π‘ˆ ∈ 𝑃 ∧ 𝑉 ∈ 𝑃) β†’ (βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) β†’ ((π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋)))))
6548, 49, 64syl2anc 582 . . 3 (πœ‘ β†’ (βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘’πΌπ‘Œ) ∧ π‘Ž ∈ (𝑣𝐼𝑋))) β†’ ((π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋)))))
6647, 65mpd 15 . 2 (πœ‘ β†’ ((π‘ˆ ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (π‘ŒπΌπ‘)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋))))
671, 2, 66mp2and 695 1 (πœ‘ β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (π‘ˆπΌπ‘Œ) ∧ π‘Ž ∈ (𝑉𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ w3o 1084   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  {cab 2707  βˆ€wral 3059  βˆƒwrex 3068  {crab 3430  Vcvv 3472  [wsbc 3776   βˆ– cdif 3944   ∩ cin 3946  π’« cpw 4601  {csn 4627  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413  Basecbs 17148  distcds 17210  TarskiGcstrkg 27945  TarskiGCcstrkgc 27946  TarskiGBcstrkgb 27947  TarskiGCBcstrkgcb 27948  Itvcitv 27951  LineGclng 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-trkgb 27967  df-trkg 27971
This theorem is referenced by:  tgbtwncom  28006  tgbtwnswapid  28010  tgbtwnintr  28011  tgtrisegint  28017  tgbtwnconn1  28093  midexlem  28210  opphllem  28253  opphllem1  28265  outpasch  28273  hlpasch  28274  lnopp2hpgb  28281  f1otrg  28389
  Copyright terms: Public domain W3C validator