MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgpasch Structured version   Visualization version   GIF version

Theorem axtgpasch 26732
Description: Axiom of (Inner) Pasch, Axiom A7 of [Schwabhauser] p. 12. Given triangle 𝑋𝑌𝑍, point 𝑈 in segment 𝑋𝑍, and point 𝑉 in segment 𝑌𝑍, there exists a point 𝑎 on both the segment 𝑈𝑌 and the segment 𝑉𝑋. This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of [Tarski1999] p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of [Schwabhauser] p. 69 and the brief discussion in axiom 7.1 of [Tarski1999] p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgpasch.1 (𝜑𝑋𝑃)
axtgpasch.2 (𝜑𝑌𝑃)
axtgpasch.3 (𝜑𝑍𝑃)
axtgpasch.4 (𝜑𝑈𝑃)
axtgpasch.5 (𝜑𝑉𝑃)
axtgpasch.6 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
axtgpasch.7 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
axtgpasch (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Distinct variable groups:   𝐼,𝑎   𝑃,𝑎   𝑈,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝑉,𝑎   ,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐺(𝑎)

Proof of Theorem axtgpasch
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgpasch.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
2 axtgpasch.7 . 2 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
3 df-trkg 26718 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
4 inss1 4159 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
5 inss2 4160 . . . . . . . 8 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
64, 5sstri 3926 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
73, 6eqsstri 3951 . . . . . 6 TarskiG ⊆ TarskiGB
8 axtrkg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
97, 8sselid 3915 . . . . 5 (𝜑𝐺 ∈ TarskiGB)
10 axtrkg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
11 axtrkg.d . . . . . . . 8 = (dist‘𝐺)
12 axtrkg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
1310, 11, 12istrkgb 26720 . . . . . . 7 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1413simprbi 496 . . . . . 6 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1514simp2d 1141 . . . . 5 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
169, 15syl 17 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
17 axtgpasch.1 . . . . 5 (𝜑𝑋𝑃)
18 axtgpasch.2 . . . . 5 (𝜑𝑌𝑃)
19 axtgpasch.3 . . . . 5 (𝜑𝑍𝑃)
20 oveq1 7262 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2120eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑧)))
2221anbi1d 629 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧))))
23 oveq2 7263 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑣𝐼𝑥) = (𝑣𝐼𝑋))
2423eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑎 ∈ (𝑣𝐼𝑥) ↔ 𝑎 ∈ (𝑣𝐼𝑋)))
2524anbi2d 628 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2625rexbidv 3225 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2722, 26imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
28272ralbidv 3122 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
29 oveq1 7262 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
3029eleq2d 2824 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑣 ∈ (𝑦𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑧)))
3130anbi2d 628 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧))))
32 oveq2 7263 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑢𝐼𝑦) = (𝑢𝐼𝑌))
3332eleq2d 2824 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑎 ∈ (𝑢𝐼𝑦) ↔ 𝑎 ∈ (𝑢𝐼𝑌)))
3433anbi1d 629 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3534rexbidv 3225 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3631, 35imbi12d 344 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
37362ralbidv 3122 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
38 oveq2 7263 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
3938eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑋𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑍)))
40 oveq2 7263 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
4140eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑣 ∈ (𝑌𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑍)))
4239, 41anbi12d 630 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
4342imbi1d 341 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
44432ralbidv 3122 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4528, 37, 44rspc3v 3565 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4617, 18, 19, 45syl3anc 1369 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4716, 46mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
48 axtgpasch.4 . . . 4 (𝜑𝑈𝑃)
49 axtgpasch.5 . . . 4 (𝜑𝑉𝑃)
50 eleq1 2826 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑍) ↔ 𝑈 ∈ (𝑋𝐼𝑍)))
5150anbi1d 629 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
52 oveq1 7262 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝐼𝑌) = (𝑈𝐼𝑌))
5352eleq2d 2824 . . . . . . . 8 (𝑢 = 𝑈 → (𝑎 ∈ (𝑢𝐼𝑌) ↔ 𝑎 ∈ (𝑈𝐼𝑌)))
5453anbi1d 629 . . . . . . 7 (𝑢 = 𝑈 → ((𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5554rexbidv 3225 . . . . . 6 (𝑢 = 𝑈 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5651, 55imbi12d 344 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
57 eleq1 2826 . . . . . . 7 (𝑣 = 𝑉 → (𝑣 ∈ (𝑌𝐼𝑍) ↔ 𝑉 ∈ (𝑌𝐼𝑍)))
5857anbi2d 628 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍))))
59 oveq1 7262 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑣𝐼𝑋) = (𝑉𝐼𝑋))
6059eleq2d 2824 . . . . . . . 8 (𝑣 = 𝑉 → (𝑎 ∈ (𝑣𝐼𝑋) ↔ 𝑎 ∈ (𝑉𝐼𝑋)))
6160anbi2d 628 . . . . . . 7 (𝑣 = 𝑉 → ((𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6261rexbidv 3225 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6358, 62imbi12d 344 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6456, 63rspc2v 3562 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6548, 49, 64syl2anc 583 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6647, 65mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
671, 2, 66mp2and 695 1 (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  [wsbc 3711  cdif 3880  cin 3882  𝒫 cpw 4530  {csn 4558  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  TarskiGCcstrkgc 26694  TarskiGBcstrkgb 26695  TarskiGCBcstrkgcb 26696  Itvcitv 26699  LineGclng 26700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgb 26714  df-trkg 26718
This theorem is referenced by:  tgbtwncom  26753  tgbtwnswapid  26757  tgbtwnintr  26758  tgtrisegint  26764  tgbtwnconn1  26840  midexlem  26957  opphllem  27000  opphllem1  27012  outpasch  27020  hlpasch  27021  lnopp2hpgb  27028  f1otrg  27136
  Copyright terms: Public domain W3C validator