MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgpasch Structured version   Visualization version   GIF version

Theorem axtgpasch 28392
Description: Axiom of (Inner) Pasch, Axiom A7 of [Schwabhauser] p. 12. Given triangle 𝑋𝑌𝑍, point 𝑈 in segment 𝑋𝑍, and point 𝑉 in segment 𝑌𝑍, there exists a point 𝑎 on both the segment 𝑈𝑌 and the segment 𝑉𝑋. This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of [Tarski1999] p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of [Schwabhauser] p. 69 and the brief discussion in axiom 7.1 of [Tarski1999] p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgpasch.1 (𝜑𝑋𝑃)
axtgpasch.2 (𝜑𝑌𝑃)
axtgpasch.3 (𝜑𝑍𝑃)
axtgpasch.4 (𝜑𝑈𝑃)
axtgpasch.5 (𝜑𝑉𝑃)
axtgpasch.6 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
axtgpasch.7 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
axtgpasch (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Distinct variable groups:   𝐼,𝑎   𝑃,𝑎   𝑈,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝑉,𝑎   ,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐺(𝑎)

Proof of Theorem axtgpasch
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgpasch.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
2 axtgpasch.7 . 2 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
3 df-trkg 28378 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
4 inss1 4212 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
5 inss2 4213 . . . . . . . 8 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
64, 5sstri 3968 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
73, 6eqsstri 4005 . . . . . 6 TarskiG ⊆ TarskiGB
8 axtrkg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
97, 8sselid 3956 . . . . 5 (𝜑𝐺 ∈ TarskiGB)
10 axtrkg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
11 axtrkg.d . . . . . . . 8 = (dist‘𝐺)
12 axtrkg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
1310, 11, 12istrkgb 28380 . . . . . . 7 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1413simprbi 496 . . . . . 6 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1514simp2d 1143 . . . . 5 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
169, 15syl 17 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
17 axtgpasch.1 . . . . 5 (𝜑𝑋𝑃)
18 axtgpasch.2 . . . . 5 (𝜑𝑌𝑃)
19 axtgpasch.3 . . . . 5 (𝜑𝑍𝑃)
20 oveq1 7410 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2120eleq2d 2820 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑧)))
2221anbi1d 631 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧))))
23 oveq2 7411 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑣𝐼𝑥) = (𝑣𝐼𝑋))
2423eleq2d 2820 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑎 ∈ (𝑣𝐼𝑥) ↔ 𝑎 ∈ (𝑣𝐼𝑋)))
2524anbi2d 630 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2625rexbidv 3164 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2722, 26imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
28272ralbidv 3205 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
29 oveq1 7410 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
3029eleq2d 2820 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑣 ∈ (𝑦𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑧)))
3130anbi2d 630 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧))))
32 oveq2 7411 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑢𝐼𝑦) = (𝑢𝐼𝑌))
3332eleq2d 2820 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑎 ∈ (𝑢𝐼𝑦) ↔ 𝑎 ∈ (𝑢𝐼𝑌)))
3433anbi1d 631 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3534rexbidv 3164 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3631, 35imbi12d 344 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
37362ralbidv 3205 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
38 oveq2 7411 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
3938eleq2d 2820 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑋𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑍)))
40 oveq2 7411 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
4140eleq2d 2820 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑣 ∈ (𝑌𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑍)))
4239, 41anbi12d 632 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
4342imbi1d 341 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
44432ralbidv 3205 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4528, 37, 44rspc3v 3617 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4617, 18, 19, 45syl3anc 1373 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4716, 46mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
48 axtgpasch.4 . . . 4 (𝜑𝑈𝑃)
49 axtgpasch.5 . . . 4 (𝜑𝑉𝑃)
50 eleq1 2822 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑍) ↔ 𝑈 ∈ (𝑋𝐼𝑍)))
5150anbi1d 631 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
52 oveq1 7410 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝐼𝑌) = (𝑈𝐼𝑌))
5352eleq2d 2820 . . . . . . . 8 (𝑢 = 𝑈 → (𝑎 ∈ (𝑢𝐼𝑌) ↔ 𝑎 ∈ (𝑈𝐼𝑌)))
5453anbi1d 631 . . . . . . 7 (𝑢 = 𝑈 → ((𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5554rexbidv 3164 . . . . . 6 (𝑢 = 𝑈 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5651, 55imbi12d 344 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
57 eleq1 2822 . . . . . . 7 (𝑣 = 𝑉 → (𝑣 ∈ (𝑌𝐼𝑍) ↔ 𝑉 ∈ (𝑌𝐼𝑍)))
5857anbi2d 630 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍))))
59 oveq1 7410 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑣𝐼𝑋) = (𝑉𝐼𝑋))
6059eleq2d 2820 . . . . . . . 8 (𝑣 = 𝑉 → (𝑎 ∈ (𝑣𝐼𝑋) ↔ 𝑎 ∈ (𝑉𝐼𝑋)))
6160anbi2d 630 . . . . . . 7 (𝑣 = 𝑉 → ((𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6261rexbidv 3164 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6358, 62imbi12d 344 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6456, 63rspc2v 3612 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6548, 49, 64syl2anc 584 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6647, 65mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
671, 2, 66mp2and 699 1 (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  [wsbc 3765  cdif 3923  cin 3925  𝒫 cpw 4575  {csn 4601  cfv 6530  (class class class)co 7403  cmpo 7405  Basecbs 17226  distcds 17278  TarskiGcstrkg 28352  TarskiGCcstrkgc 28353  TarskiGBcstrkgb 28354  TarskiGCBcstrkgcb 28355  Itvcitv 28358  LineGclng 28359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-trkgb 28374  df-trkg 28378
This theorem is referenced by:  tgbtwncom  28413  tgbtwnswapid  28417  tgbtwnintr  28418  tgtrisegint  28424  tgbtwnconn1  28500  midexlem  28617  opphllem  28660  opphllem1  28672  outpasch  28680  hlpasch  28681  lnopp2hpgb  28688  f1otrg  28796
  Copyright terms: Public domain W3C validator