MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgpasch Structured version   Visualization version   GIF version

Theorem axtgpasch 26828
Description: Axiom of (Inner) Pasch, Axiom A7 of [Schwabhauser] p. 12. Given triangle 𝑋𝑌𝑍, point 𝑈 in segment 𝑋𝑍, and point 𝑉 in segment 𝑌𝑍, there exists a point 𝑎 on both the segment 𝑈𝑌 and the segment 𝑉𝑋. This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of [Tarski1999] p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of [Schwabhauser] p. 69 and the brief discussion in axiom 7.1 of [Tarski1999] p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgpasch.1 (𝜑𝑋𝑃)
axtgpasch.2 (𝜑𝑌𝑃)
axtgpasch.3 (𝜑𝑍𝑃)
axtgpasch.4 (𝜑𝑈𝑃)
axtgpasch.5 (𝜑𝑉𝑃)
axtgpasch.6 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
axtgpasch.7 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
axtgpasch (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Distinct variable groups:   𝐼,𝑎   𝑃,𝑎   𝑈,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝑉,𝑎   ,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐺(𝑎)

Proof of Theorem axtgpasch
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgpasch.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑍))
2 axtgpasch.7 . 2 (𝜑𝑉 ∈ (𝑌𝐼𝑍))
3 df-trkg 26814 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
4 inss1 4162 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
5 inss2 4163 . . . . . . . 8 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
64, 5sstri 3930 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
73, 6eqsstri 3955 . . . . . 6 TarskiG ⊆ TarskiGB
8 axtrkg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
97, 8sselid 3919 . . . . 5 (𝜑𝐺 ∈ TarskiGB)
10 axtrkg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
11 axtrkg.d . . . . . . . 8 = (dist‘𝐺)
12 axtrkg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
1310, 11, 12istrkgb 26816 . . . . . . 7 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1413simprbi 497 . . . . . 6 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1514simp2d 1142 . . . . 5 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
169, 15syl 17 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))))
17 axtgpasch.1 . . . . 5 (𝜑𝑋𝑃)
18 axtgpasch.2 . . . . 5 (𝜑𝑌𝑃)
19 axtgpasch.3 . . . . 5 (𝜑𝑍𝑃)
20 oveq1 7282 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2120eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑧)))
2221anbi1d 630 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧))))
23 oveq2 7283 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑣𝐼𝑥) = (𝑣𝐼𝑋))
2423eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑎 ∈ (𝑣𝐼𝑥) ↔ 𝑎 ∈ (𝑣𝐼𝑋)))
2524anbi2d 629 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2625rexbidv 3226 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
2722, 26imbi12d 345 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
28272ralbidv 3129 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
29 oveq1 7282 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
3029eleq2d 2824 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑣 ∈ (𝑦𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑧)))
3130anbi2d 629 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧))))
32 oveq2 7283 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑢𝐼𝑦) = (𝑢𝐼𝑌))
3332eleq2d 2824 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑎 ∈ (𝑢𝐼𝑦) ↔ 𝑎 ∈ (𝑢𝐼𝑌)))
3433anbi1d 630 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3534rexbidv 3226 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
3631, 35imbi12d 345 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
37362ralbidv 3129 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
38 oveq2 7283 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
3938eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑋𝐼𝑧) ↔ 𝑢 ∈ (𝑋𝐼𝑍)))
40 oveq2 7283 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
4140eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑣 ∈ (𝑌𝐼𝑧) ↔ 𝑣 ∈ (𝑌𝐼𝑍)))
4239, 41anbi12d 631 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) ↔ (𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
4342imbi1d 342 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
44432ralbidv 3129 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑧) ∧ 𝑣 ∈ (𝑌𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4528, 37, 44rspc3v 3573 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4617, 18, 19, 45syl3anc 1370 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
4716, 46mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
48 axtgpasch.4 . . . 4 (𝜑𝑈𝑃)
49 axtgpasch.5 . . . 4 (𝜑𝑉𝑃)
50 eleq1 2826 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑍) ↔ 𝑈 ∈ (𝑋𝐼𝑍)))
5150anbi1d 630 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍))))
52 oveq1 7282 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝐼𝑌) = (𝑈𝐼𝑌))
5352eleq2d 2824 . . . . . . . 8 (𝑢 = 𝑈 → (𝑎 ∈ (𝑢𝐼𝑌) ↔ 𝑎 ∈ (𝑈𝐼𝑌)))
5453anbi1d 630 . . . . . . 7 (𝑢 = 𝑈 → ((𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5554rexbidv 3226 . . . . . 6 (𝑢 = 𝑈 → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))))
5651, 55imbi12d 345 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)))))
57 eleq1 2826 . . . . . . 7 (𝑣 = 𝑉 → (𝑣 ∈ (𝑌𝐼𝑍) ↔ 𝑉 ∈ (𝑌𝐼𝑍)))
5857anbi2d 629 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) ↔ (𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍))))
59 oveq1 7282 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑣𝐼𝑋) = (𝑉𝐼𝑋))
6059eleq2d 2824 . . . . . . . 8 (𝑣 = 𝑉 → (𝑎 ∈ (𝑣𝐼𝑋) ↔ 𝑎 ∈ (𝑉𝐼𝑋)))
6160anbi2d 629 . . . . . . 7 (𝑣 = 𝑉 → ((𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6261rexbidv 3226 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋)) ↔ ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
6358, 62imbi12d 345 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) ↔ ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6456, 63rspc2v 3570 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6548, 49, 64syl2anc 584 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑍) ∧ 𝑣 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑌) ∧ 𝑎 ∈ (𝑣𝐼𝑋))) → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))))
6647, 65mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑍) ∧ 𝑉 ∈ (𝑌𝐼𝑍)) → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))))
671, 2, 66mp2and 696 1 (𝜑 → ∃𝑎𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  [wsbc 3716  cdif 3884  cin 3886  𝒫 cpw 4533  {csn 4561  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  TarskiGCcstrkgc 26789  TarskiGBcstrkgb 26790  TarskiGCBcstrkgcb 26791  Itvcitv 26794  LineGclng 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-trkgb 26810  df-trkg 26814
This theorem is referenced by:  tgbtwncom  26849  tgbtwnswapid  26853  tgbtwnintr  26854  tgtrisegint  26860  tgbtwnconn1  26936  midexlem  27053  opphllem  27096  opphllem1  27108  outpasch  27116  hlpasch  27117  lnopp2hpgb  27124  f1otrg  27232
  Copyright terms: Public domain W3C validator