MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcgrid Structured version   Visualization version   GIF version

Theorem axtgcgrid 26248
Description: Axiom of identity of congruence, Axiom A3 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcgrid.1 (𝜑𝑋𝑃)
axtgcgrid.2 (𝜑𝑌𝑃)
axtgcgrid.3 (𝜑𝑍𝑃)
axtgcgrid.4 (𝜑 → (𝑋 𝑌) = (𝑍 𝑍))
Assertion
Ref Expression
axtgcgrid (𝜑𝑋 = 𝑌)

Proof of Theorem axtgcgrid
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 26238 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4204 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss1 4204 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGC
42, 3sstri 3975 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGC
51, 4eqsstri 4000 . . . 4 TarskiG ⊆ TarskiGC
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sseldi 3964 . . 3 (𝜑𝐺 ∈ TarskiGC)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgc 26239 . . . . 5 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
1211simprbi 499 . . . 4 (𝐺 ∈ TarskiGC → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
1312simprd 498 . . 3 (𝐺 ∈ TarskiGC → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))
15 axtgcgrid.4 . 2 (𝜑 → (𝑋 𝑌) = (𝑍 𝑍))
16 axtgcgrid.1 . . 3 (𝜑𝑋𝑃)
17 axtgcgrid.2 . . 3 (𝜑𝑌𝑃)
18 axtgcgrid.3 . . 3 (𝜑𝑍𝑃)
19 oveq1 7162 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
2019eqeq1d 2823 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑧 𝑧) ↔ (𝑋 𝑦) = (𝑧 𝑧)))
21 eqeq1 2825 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2220, 21imbi12d 347 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ((𝑋 𝑦) = (𝑧 𝑧) → 𝑋 = 𝑦)))
23 oveq2 7163 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
2423eqeq1d 2823 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑧 𝑧) ↔ (𝑋 𝑌) = (𝑧 𝑧)))
25 eqeq2 2833 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2624, 25imbi12d 347 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦) = (𝑧 𝑧) → 𝑋 = 𝑦) ↔ ((𝑋 𝑌) = (𝑧 𝑧) → 𝑋 = 𝑌)))
27 id 22 . . . . . . 7 (𝑧 = 𝑍𝑧 = 𝑍)
2827, 27oveq12d 7173 . . . . . 6 (𝑧 = 𝑍 → (𝑧 𝑧) = (𝑍 𝑍))
2928eqeq2d 2832 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌) = (𝑧 𝑧) ↔ (𝑋 𝑌) = (𝑍 𝑍)))
3029imbi1d 344 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌) = (𝑧 𝑧) → 𝑋 = 𝑌) ↔ ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3122, 26, 30rspc3v 3635 . . 3 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) → ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3216, 17, 18, 31syl3anc 1367 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) → ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3314, 15, 32mp2d 49 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3o 1082   = wceq 1533  wcel 2110  {cab 2799  wral 3138  {crab 3142  Vcvv 3494  [wsbc 3771  cdif 3932  cin 3934  {csn 4566  cfv 6354  (class class class)co 7155  cmpo 7157  Basecbs 16482  distcds 16573  TarskiGcstrkg 26215  TarskiGCcstrkgc 26216  TarskiGBcstrkgb 26217  TarskiGCBcstrkgcb 26218  Itvcitv 26221  LineGclng 26222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5209
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362  df-ov 7158  df-trkgc 26233  df-trkg 26238
This theorem is referenced by:  tgcgreqb  26266  tgcgrtriv  26269  tgsegconeq  26271  tgbtwntriv2  26272  tgbtwndiff  26291  tgifscgr  26293  tgbtwnxfr  26315  lnid  26355  tgbtwnconn1lem2  26358  tgbtwnconn1lem3  26359  legtri3  26375  legeq  26378  legbtwn  26379  mirreu3  26439  colmid  26473  krippenlem  26475  lmiisolem  26581  hypcgrlem1  26584  hypcgrlem2  26585  f1otrg  26656
  Copyright terms: Public domain W3C validator