MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcgrid Structured version   Visualization version   GIF version

Theorem axtgcgrid 28388
Description: Axiom of identity of congruence, Axiom A3 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcgrid.1 (𝜑𝑋𝑃)
axtgcgrid.2 (𝜑𝑌𝑃)
axtgcgrid.3 (𝜑𝑍𝑃)
axtgcgrid.4 (𝜑 → (𝑋 𝑌) = (𝑍 𝑍))
Assertion
Ref Expression
axtgcgrid (𝜑𝑋 = 𝑌)

Proof of Theorem axtgcgrid
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28378 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4212 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss1 4212 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGC
42, 3sstri 3968 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGC
51, 4eqsstri 4005 . . . 4 TarskiG ⊆ TarskiGC
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3956 . . 3 (𝜑𝐺 ∈ TarskiGC)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgc 28379 . . . . 5 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
1211simprbi 496 . . . 4 (𝐺 ∈ TarskiGC → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
1312simprd 495 . . 3 (𝐺 ∈ TarskiGC → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))
15 axtgcgrid.4 . 2 (𝜑 → (𝑋 𝑌) = (𝑍 𝑍))
16 axtgcgrid.1 . . 3 (𝜑𝑋𝑃)
17 axtgcgrid.2 . . 3 (𝜑𝑌𝑃)
18 axtgcgrid.3 . . 3 (𝜑𝑍𝑃)
19 oveq1 7410 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
2019eqeq1d 2737 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑧 𝑧) ↔ (𝑋 𝑦) = (𝑧 𝑧)))
21 eqeq1 2739 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2220, 21imbi12d 344 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ((𝑋 𝑦) = (𝑧 𝑧) → 𝑋 = 𝑦)))
23 oveq2 7411 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
2423eqeq1d 2737 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑧 𝑧) ↔ (𝑋 𝑌) = (𝑧 𝑧)))
25 eqeq2 2747 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2624, 25imbi12d 344 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦) = (𝑧 𝑧) → 𝑋 = 𝑦) ↔ ((𝑋 𝑌) = (𝑧 𝑧) → 𝑋 = 𝑌)))
27 id 22 . . . . . . 7 (𝑧 = 𝑍𝑧 = 𝑍)
2827, 27oveq12d 7421 . . . . . 6 (𝑧 = 𝑍 → (𝑧 𝑧) = (𝑍 𝑍))
2928eqeq2d 2746 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌) = (𝑧 𝑧) ↔ (𝑋 𝑌) = (𝑍 𝑍)))
3029imbi1d 341 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌) = (𝑧 𝑧) → 𝑋 = 𝑌) ↔ ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3122, 26, 30rspc3v 3617 . . 3 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) → ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3216, 17, 18, 31syl3anc 1373 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) → ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3314, 15, 32mp2d 49 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2108  {cab 2713  wral 3051  {crab 3415  Vcvv 3459  [wsbc 3765  cdif 3923  cin 3925  {csn 4601  cfv 6530  (class class class)co 7403  cmpo 7405  Basecbs 17226  distcds 17278  TarskiGcstrkg 28352  TarskiGCcstrkgc 28353  TarskiGBcstrkgb 28354  TarskiGCBcstrkgcb 28355  Itvcitv 28358  LineGclng 28359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-trkgc 28373  df-trkg 28378
This theorem is referenced by:  tgcgreqb  28406  tgcgrtriv  28409  tgsegconeq  28411  tgbtwntriv2  28412  tgbtwndiff  28431  tgifscgr  28433  tgbtwnxfr  28455  lnid  28495  tgbtwnconn1lem2  28498  tgbtwnconn1lem3  28499  legtri3  28515  legeq  28518  legbtwn  28519  mirreu3  28579  colmid  28613  krippenlem  28615  lmiisolem  28721  hypcgrlem1  28724  hypcgrlem2  28725  f1otrg  28796
  Copyright terms: Public domain W3C validator