MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcgrid Structured version   Visualization version   GIF version

Theorem axtgcgrid 28442
Description: Axiom of identity of congruence, Axiom A3 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcgrid.1 (𝜑𝑋𝑃)
axtgcgrid.2 (𝜑𝑌𝑃)
axtgcgrid.3 (𝜑𝑍𝑃)
axtgcgrid.4 (𝜑 → (𝑋 𝑌) = (𝑍 𝑍))
Assertion
Ref Expression
axtgcgrid (𝜑𝑋 = 𝑌)

Proof of Theorem axtgcgrid
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28432 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4187 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss1 4187 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGC
42, 3sstri 3944 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGC
51, 4eqsstri 3981 . . . 4 TarskiG ⊆ TarskiGC
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3932 . . 3 (𝜑𝐺 ∈ TarskiGC)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgc 28433 . . . . 5 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
1211simprbi 496 . . . 4 (𝐺 ∈ TarskiGC → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
1312simprd 495 . . 3 (𝐺 ∈ TarskiGC → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))
15 axtgcgrid.4 . 2 (𝜑 → (𝑋 𝑌) = (𝑍 𝑍))
16 axtgcgrid.1 . . 3 (𝜑𝑋𝑃)
17 axtgcgrid.2 . . 3 (𝜑𝑌𝑃)
18 axtgcgrid.3 . . 3 (𝜑𝑍𝑃)
19 oveq1 7353 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
2019eqeq1d 2733 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑧 𝑧) ↔ (𝑋 𝑦) = (𝑧 𝑧)))
21 eqeq1 2735 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2220, 21imbi12d 344 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ((𝑋 𝑦) = (𝑧 𝑧) → 𝑋 = 𝑦)))
23 oveq2 7354 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
2423eqeq1d 2733 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑧 𝑧) ↔ (𝑋 𝑌) = (𝑧 𝑧)))
25 eqeq2 2743 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2624, 25imbi12d 344 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦) = (𝑧 𝑧) → 𝑋 = 𝑦) ↔ ((𝑋 𝑌) = (𝑧 𝑧) → 𝑋 = 𝑌)))
27 id 22 . . . . . . 7 (𝑧 = 𝑍𝑧 = 𝑍)
2827, 27oveq12d 7364 . . . . . 6 (𝑧 = 𝑍 → (𝑧 𝑧) = (𝑍 𝑍))
2928eqeq2d 2742 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌) = (𝑧 𝑧) ↔ (𝑋 𝑌) = (𝑍 𝑍)))
3029imbi1d 341 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌) = (𝑧 𝑧) → 𝑋 = 𝑌) ↔ ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3122, 26, 30rspc3v 3593 . . 3 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) → ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3216, 17, 18, 31syl3anc 1373 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) → ((𝑋 𝑌) = (𝑍 𝑍) → 𝑋 = 𝑌)))
3314, 15, 32mp2d 49 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1541  wcel 2111  {cab 2709  wral 3047  {crab 3395  Vcvv 3436  [wsbc 3741  cdif 3899  cin 3901  {csn 4576  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  distcds 17170  TarskiGcstrkg 28406  TarskiGCcstrkgc 28407  TarskiGBcstrkgb 28408  TarskiGCBcstrkgcb 28409  Itvcitv 28412  LineGclng 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-trkgc 28427  df-trkg 28432
This theorem is referenced by:  tgcgreqb  28460  tgcgrtriv  28463  tgsegconeq  28465  tgbtwntriv2  28466  tgbtwndiff  28485  tgifscgr  28487  tgbtwnxfr  28509  lnid  28549  tgbtwnconn1lem2  28552  tgbtwnconn1lem3  28553  legtri3  28569  legeq  28572  legbtwn  28573  mirreu3  28633  colmid  28667  krippenlem  28669  lmiisolem  28775  hypcgrlem1  28778  hypcgrlem2  28779  f1otrg  28850
  Copyright terms: Public domain W3C validator