MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcgrid Structured version   Visualization version   GIF version

Theorem axtgcgrid 27752
Description: Axiom of identity of congruence, Axiom A3 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Baseβ€˜πΊ)
axtrkg.d βˆ’ = (distβ€˜πΊ)
axtrkg.i 𝐼 = (Itvβ€˜πΊ)
axtrkg.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
axtgcgrid.1 (πœ‘ β†’ 𝑋 ∈ 𝑃)
axtgcgrid.2 (πœ‘ β†’ π‘Œ ∈ 𝑃)
axtgcgrid.3 (πœ‘ β†’ 𝑍 ∈ 𝑃)
axtgcgrid.4 (πœ‘ β†’ (𝑋 βˆ’ π‘Œ) = (𝑍 βˆ’ 𝑍))
Assertion
Ref Expression
axtgcgrid (πœ‘ β†’ 𝑋 = π‘Œ)

Proof of Theorem axtgcgrid
Dummy variables 𝑓 𝑖 𝑝 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 27742 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}))
2 inss1 4228 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† (TarskiGC ∩ TarskiGB)
3 inss1 4228 . . . . . 6 (TarskiGC ∩ TarskiGB) βŠ† TarskiGC
42, 3sstri 3991 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† TarskiGC
51, 4eqsstri 4016 . . . 4 TarskiG βŠ† TarskiGC
6 axtrkg.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
75, 6sselid 3980 . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiGC)
8 axtrkg.p . . . . . 6 𝑃 = (Baseβ€˜πΊ)
9 axtrkg.d . . . . . 6 βˆ’ = (distβ€˜πΊ)
10 axtrkg.i . . . . . 6 𝐼 = (Itvβ€˜πΊ)
118, 9, 10istrkgc 27743 . . . . 5 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (π‘₯ βˆ’ 𝑦) = (𝑦 βˆ’ π‘₯) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 ((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ π‘₯ = 𝑦))))
1211simprbi 497 . . . 4 (𝐺 ∈ TarskiGC β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (π‘₯ βˆ’ 𝑦) = (𝑦 βˆ’ π‘₯) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 ((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ π‘₯ = 𝑦)))
1312simprd 496 . . 3 (𝐺 ∈ TarskiGC β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 ((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ π‘₯ = 𝑦))
147, 13syl 17 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 ((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ π‘₯ = 𝑦))
15 axtgcgrid.4 . 2 (πœ‘ β†’ (𝑋 βˆ’ π‘Œ) = (𝑍 βˆ’ 𝑍))
16 axtgcgrid.1 . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑃)
17 axtgcgrid.2 . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑃)
18 axtgcgrid.3 . . 3 (πœ‘ β†’ 𝑍 ∈ 𝑃)
19 oveq1 7418 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯ βˆ’ 𝑦) = (𝑋 βˆ’ 𝑦))
2019eqeq1d 2734 . . . . 5 (π‘₯ = 𝑋 β†’ ((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) ↔ (𝑋 βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧)))
21 eqeq1 2736 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ = 𝑦 ↔ 𝑋 = 𝑦))
2220, 21imbi12d 344 . . . 4 (π‘₯ = 𝑋 β†’ (((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ π‘₯ = 𝑦) ↔ ((𝑋 βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ 𝑋 = 𝑦)))
23 oveq2 7419 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑋 βˆ’ 𝑦) = (𝑋 βˆ’ π‘Œ))
2423eqeq1d 2734 . . . . 5 (𝑦 = π‘Œ β†’ ((𝑋 βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) ↔ (𝑋 βˆ’ π‘Œ) = (𝑧 βˆ’ 𝑧)))
25 eqeq2 2744 . . . . 5 (𝑦 = π‘Œ β†’ (𝑋 = 𝑦 ↔ 𝑋 = π‘Œ))
2624, 25imbi12d 344 . . . 4 (𝑦 = π‘Œ β†’ (((𝑋 βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ 𝑋 = 𝑦) ↔ ((𝑋 βˆ’ π‘Œ) = (𝑧 βˆ’ 𝑧) β†’ 𝑋 = π‘Œ)))
27 id 22 . . . . . . 7 (𝑧 = 𝑍 β†’ 𝑧 = 𝑍)
2827, 27oveq12d 7429 . . . . . 6 (𝑧 = 𝑍 β†’ (𝑧 βˆ’ 𝑧) = (𝑍 βˆ’ 𝑍))
2928eqeq2d 2743 . . . . 5 (𝑧 = 𝑍 β†’ ((𝑋 βˆ’ π‘Œ) = (𝑧 βˆ’ 𝑧) ↔ (𝑋 βˆ’ π‘Œ) = (𝑍 βˆ’ 𝑍)))
3029imbi1d 341 . . . 4 (𝑧 = 𝑍 β†’ (((𝑋 βˆ’ π‘Œ) = (𝑧 βˆ’ 𝑧) β†’ 𝑋 = π‘Œ) ↔ ((𝑋 βˆ’ π‘Œ) = (𝑍 βˆ’ 𝑍) β†’ 𝑋 = π‘Œ)))
3122, 26, 30rspc3v 3627 . . 3 ((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 ((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ π‘₯ = 𝑦) β†’ ((𝑋 βˆ’ π‘Œ) = (𝑍 βˆ’ 𝑍) β†’ 𝑋 = π‘Œ)))
3216, 17, 18, 31syl3anc 1371 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 ((π‘₯ βˆ’ 𝑦) = (𝑧 βˆ’ 𝑧) β†’ π‘₯ = 𝑦) β†’ ((𝑋 βˆ’ π‘Œ) = (𝑍 βˆ’ 𝑍) β†’ 𝑋 = π‘Œ)))
3314, 15, 32mp2d 49 1 (πœ‘ β†’ 𝑋 = π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ w3o 1086   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  {crab 3432  Vcvv 3474  [wsbc 3777   βˆ– cdif 3945   ∩ cin 3947  {csn 4628  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  Basecbs 17146  distcds 17208  TarskiGcstrkg 27716  TarskiGCcstrkgc 27717  TarskiGBcstrkgb 27718  TarskiGCBcstrkgcb 27719  Itvcitv 27722  LineGclng 27723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-trkgc 27737  df-trkg 27742
This theorem is referenced by:  tgcgreqb  27770  tgcgrtriv  27773  tgsegconeq  27775  tgbtwntriv2  27776  tgbtwndiff  27795  tgifscgr  27797  tgbtwnxfr  27819  lnid  27859  tgbtwnconn1lem2  27862  tgbtwnconn1lem3  27863  legtri3  27879  legeq  27882  legbtwn  27883  mirreu3  27943  colmid  27977  krippenlem  27979  lmiisolem  28085  hypcgrlem1  28088  hypcgrlem2  28089  f1otrg  28160
  Copyright terms: Public domain W3C validator