MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrg Structured version   Visualization version   GIF version

Theorem f1otrg 28782
Description: A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
f1otrkg.p 𝑃 = (Base‘𝐺)
f1otrkg.d 𝐷 = (dist‘𝐺)
f1otrkg.i 𝐼 = (Itv‘𝐺)
f1otrkg.b 𝐵 = (Base‘𝐻)
f1otrkg.e 𝐸 = (dist‘𝐻)
f1otrkg.j 𝐽 = (Itv‘𝐻)
f1otrkg.f (𝜑𝐹:𝐵1-1-onto𝑃)
f1otrkg.1 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
f1otrkg.2 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
f1otrg.h (𝜑𝐻𝑉)
f1otrg.g (𝜑𝐺 ∈ TarskiG)
f1otrg.l (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
Assertion
Ref Expression
f1otrg (𝜑𝐻 ∈ TarskiG)
Distinct variable groups:   𝑒,𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐷,𝑒,𝑓,𝑔   𝑒,𝐸,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐹,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐼,𝑓,𝑔,𝑥,𝑦   𝑒,𝐽,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑒,𝑔)   𝐼(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)

Proof of Theorem f1otrg
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1otrg.h . . . . . 6 (𝜑𝐻𝑉)
21elexd 3481 . . . . 5 (𝜑𝐻 ∈ V)
3 f1otrkg.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
4 f1otrkg.d . . . . . . . . 9 𝐷 = (dist‘𝐺)
5 f1otrkg.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
6 f1otrg.g . . . . . . . . . 10 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ TarskiG)
8 f1otrkg.f . . . . . . . . . . . 12 (𝜑𝐹:𝐵1-1-onto𝑃)
9 f1of 6814 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵𝑃)
108, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝑃)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵𝑃)
12 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
1311, 12ffvelcdmd 7071 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ 𝑃)
14 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
1511, 14ffvelcdmd 7071 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ 𝑃)
163, 4, 5, 7, 13, 15axtgcgrrflx 28373 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑦)𝐷(𝐹𝑥)))
17 f1otrkg.b . . . . . . . . 9 𝐵 = (Base‘𝐻)
18 f1otrkg.e . . . . . . . . 9 𝐸 = (dist‘𝐻)
19 f1otrkg.j . . . . . . . . 9 𝐽 = (Itv‘𝐻)
208adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵1-1-onto𝑃)
21 f1otrkg.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
2221adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
23 f1otrkg.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2423adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
253, 4, 5, 17, 18, 19, 20, 22, 24, 12, 14f1otrgds 28780 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
263, 4, 5, 17, 18, 19, 20, 22, 24, 14, 12f1otrgds 28780 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦𝐸𝑥) = ((𝐹𝑦)𝐷(𝐹𝑥)))
2716, 25, 263eqtr4d 2779 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
2827ralrimivva 3185 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
29 f1of1 6813 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵1-1𝑃)
308, 29syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵1-1𝑃)
31303ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1𝑃)
32 simp21 1206 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥𝐵)
33 simp22 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑦𝐵)
3432, 33jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐵𝑦𝐵))
3563ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐺 ∈ TarskiG)
36103ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵𝑃)
3736, 32ffvelcdmd 7071 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) ∈ 𝑃)
3836, 33ffvelcdmd 7071 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑦) ∈ 𝑃)
39 simp23 1208 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑧𝐵)
4036, 39ffvelcdmd 7071 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑧) ∈ 𝑃)
41 simp3 1138 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = (𝑧𝐸𝑧))
4283ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1-onto𝑃)
43213ad2antl1 1185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
44233ad2antl1 1185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
453, 4, 5, 17, 18, 19, 42, 43, 44, 32, 33f1otrgds 28780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
463, 4, 5, 17, 18, 19, 42, 43, 44, 39, 39f1otrgds 28780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑧𝐸𝑧) = ((𝐹𝑧)𝐷(𝐹𝑧)))
4741, 45, 463eqtr3d 2777 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑧)𝐷(𝐹𝑧)))
483, 4, 5, 35, 37, 38, 40, 47axtgcgrid 28374 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) = (𝐹𝑦))
49 f1veqaeq 7245 . . . . . . . . . 10 ((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5049imp 406 . . . . . . . . 9 (((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
5131, 34, 48, 50syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥 = 𝑦)
52513expia 1121 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5352ralrimivvva 3188 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5428, 53jca 511 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦)))
5517, 18, 19istrkgc 28365 . . . . 5 (𝐻 ∈ TarskiGC ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))))
562, 54, 55sylanbrc 583 . . . 4 (𝜑𝐻 ∈ TarskiGC)
5783ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1-onto𝑃)
5857, 29syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1𝑃)
59 simp2 1137 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑥𝐵𝑦𝐵))
6063ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐺 ∈ TarskiG)
61133adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) ∈ 𝑃)
62153adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ 𝑃)
63 simp3 1138 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦 ∈ (𝑥𝐽𝑥))
64213ad2antl1 1185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
65233ad2antl1 1185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
66123adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥𝐵)
67143adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦𝐵)
683, 4, 5, 17, 18, 19, 57, 64, 65, 66, 66, 67f1otrgitv 28781 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑦 ∈ (𝑥𝐽𝑥) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥))))
6963, 68mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥)))
703, 4, 5, 60, 61, 62, 69axtgbtwnid 28377 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) = (𝐹𝑦))
7158, 59, 70, 50syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥 = 𝑦)
72713expia 1121 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
7372ralrimivva 3185 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
74 f1ocnv 6826 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝑃𝐹:𝑃1-1-onto𝐵)
75 f1of 6814 . . . . . . . . . . . . . 14 (𝐹:𝑃1-1-onto𝐵𝐹:𝑃𝐵)
768, 74, 753syl 18 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃𝐵)
7776ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝑃𝐵)
78 simplr 768 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐𝑃)
7977, 78ffvelcdmd 7071 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ 𝐵)
80 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → 𝑎 = (𝐹𝑐))
8180eleq1d 2818 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑢𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑢𝐽𝑦)))
8280eleq1d 2818 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑣𝐽𝑥) ↔ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
8381, 82anbi12d 632 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → ((𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)) ↔ ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥))))
84 simprl 770 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
8520ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵1-1-onto𝑃)
8685ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝐵1-1-onto𝑃)
87 f1ocnvfv2 7265 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → (𝐹‘(𝐹𝑐)) = 𝑐)
8887eleq1d 2818 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
8986, 78, 88syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
9084, 89mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
9122ad4ant14 752 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9291ad4ant14 752 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9324ad4ant14 752 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
9493ad4ant14 752 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
95 simplr2 1216 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢𝐵)
9695ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑢𝐵)
9714ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑦𝐵)
9897ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑦𝐵)
993, 4, 5, 17, 18, 19, 86, 92, 94, 96, 98, 79f1otrgitv 28781 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
10090, 99mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑢𝐽𝑦))
101 simprr 772 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
10287eleq1d 2818 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
10386, 78, 102syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
104101, 103mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
105 simplr3 1217 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣𝐵)
106105ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑣𝐵)
10712ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑥𝐵)
108107ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑥𝐵)
1093, 4, 5, 17, 18, 19, 86, 92, 94, 106, 108, 79f1otrgitv 28781 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑣𝐽𝑥) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
110104, 109mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑣𝐽𝑥))
111100, 110jca 511 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
11279, 83, 111rspcedvd 3601 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
1137ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐺 ∈ TarskiG)
11411ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵𝑃)
115114, 107ffvelcdmd 7071 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑥) ∈ 𝑃)
116114, 97ffvelcdmd 7071 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑦) ∈ 𝑃)
117 simplr1 1215 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑧𝐵)
118114, 117ffvelcdmd 7071 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑧) ∈ 𝑃)
119114, 95ffvelcdmd 7071 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ 𝑃)
120114, 105ffvelcdmd 7071 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ 𝑃)
121 simprl 770 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢 ∈ (𝑥𝐽𝑧))
1223, 4, 5, 17, 18, 19, 85, 91, 93, 107, 117, 95f1otrgitv 28781 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑢 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
123121, 122mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
124 simprr 772 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣 ∈ (𝑦𝐽𝑧))
1253, 4, 5, 17, 18, 19, 85, 91, 93, 97, 117, 105f1otrgitv 28781 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑣 ∈ (𝑦𝐽𝑧) ↔ (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧))))
126124, 125mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧)))
1273, 4, 5, 113, 115, 116, 118, 119, 120, 123, 126axtgpasch 28378 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑐𝑃 (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
128112, 127r19.29a 3146 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
129128ex 412 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) → ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
130129ralrimivvva 3188 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
131130ralrimivva 3185 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
1328ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
133 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
134132, 133, 87syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) = 𝑐)
135 ffn 6702 . . . . . . . . . . . . . . . . 17 (𝐹:𝐵𝑃𝐹 Fn 𝐵)
136132, 9, 1353syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹 Fn 𝐵)
137 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
138137simpld 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ∈ 𝒫 𝐵)
139138elpwid 4582 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
140139adantlr 715 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
141 simprl 770 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
142 fnfvima 7221 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑠𝐵𝑥𝑠) → (𝐹𝑥) ∈ (𝐹𝑠))
143136, 140, 141, 142syl3anc 1372 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑥) ∈ (𝐹𝑠))
144137simprd 495 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ∈ 𝒫 𝐵)
145144elpwid 4582 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
146145adantlr 715 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
147 simprr 772 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
148 fnfvima 7221 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑡𝐵𝑦𝑡) → (𝐹𝑦) ∈ (𝐹𝑡))
149136, 146, 147, 148syl3anc 1372 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑦) ∈ (𝐹𝑡))
150 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
151 oveq1 7406 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝐹𝑥) → (𝑒𝐼𝑓) = ((𝐹𝑥)𝐼𝑓))
152151eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐹𝑥) → (𝑐 ∈ (𝑒𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼𝑓)))
153 oveq2 7407 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐹𝑦) → ((𝐹𝑥)𝐼𝑓) = ((𝐹𝑥)𝐼(𝐹𝑦)))
154153eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑦) → (𝑐 ∈ ((𝐹𝑥)𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
155152, 154rspc2va 3611 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∈ (𝐹𝑠) ∧ (𝐹𝑦) ∈ (𝐹𝑡)) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
156143, 149, 150, 155syl21anc 837 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
157134, 156eqeltrd 2833 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
1588ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
159 simp-5l 784 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
160159, 21sylancom 588 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
161 simp-5l 784 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
162161, 23sylancom 588 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
163 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
164139, 163sseldd 3957 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝐵)
165 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
166145, 165sseldd 3957 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝐵)
16776ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝑃𝐵)
168 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
169167, 168ffvelcdmd 7071 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ 𝐵)
1703, 4, 5, 17, 18, 19, 158, 160, 162, 164, 166, 169f1otrgitv 28781 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
171170adantlr 715 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
172157, 171mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ (𝑥𝐽𝑦))
173172ralrimivva 3185 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
174173adantllr 719 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
17576ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝐹:𝑃𝐵)
176 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝑐𝑃)
177175, 176ffvelcdmd 7071 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (𝐹𝑐) ∈ 𝐵)
178 eleq1 2821 . . . . . . . . . . . . . 14 (𝑏 = (𝐹𝑐) → (𝑏 ∈ (𝑥𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
1791782ralbidv 3203 . . . . . . . . . . . . 13 (𝑏 = (𝐹𝑐) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
180179adantl 481 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ 𝑏 = (𝐹𝑐)) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
181177, 180rspcedv 3592 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
182181adantr 480 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
183174, 182mpd 15 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
1846ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐺 ∈ TarskiG)
185 imassrn 6055 . . . . . . . . . . 11 (𝐹𝑠) ⊆ ran 𝐹
186 f1ofo 6821 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵onto𝑃)
187 forn 6789 . . . . . . . . . . . . 13 (𝐹:𝐵onto𝑃 → ran 𝐹 = 𝑃)
1888, 186, 1873syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 = 𝑃)
189188ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ran 𝐹 = 𝑃)
190185, 189sseqtrid 3999 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑠) ⊆ 𝑃)
191 imassrn 6055 . . . . . . . . . . 11 (𝐹𝑡) ⊆ ran 𝐹
192191, 189sseqtrid 3999 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑡) ⊆ 𝑃)
19310ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐹:𝐵𝑃)
194 simplr 768 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝑎𝐵)
195193, 194ffvelcdmd 7071 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑎) ∈ 𝑃)
1968ad5antr 734 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1-onto𝑃)
197 ffn 6702 . . . . . . . . . . . . . . . . 17 (𝐹:𝑃𝐵𝐹 Fn 𝑃)
198196, 74, 75, 1974syl 19 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹 Fn 𝑃)
199190ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑠) ⊆ 𝑃)
200 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ (𝐹𝑠))
201 fnfvima 7221 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑠) ⊆ 𝑃𝑢 ∈ (𝐹𝑠)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
202198, 199, 200, 201syl3anc 1372 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
203196, 29syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1𝑃)
204 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
205204simpld 494 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠 ∈ 𝒫 𝐵)
206205elpwid 4582 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠𝐵)
207 f1imacnv 6830 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑠𝐵) → (𝐹 “ (𝐹𝑠)) = 𝑠)
208203, 206, 207syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑠)) = 𝑠)
209202, 208eleqtrd 2835 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝑠)
210192ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑡) ⊆ 𝑃)
211 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣 ∈ (𝐹𝑡))
212 fnfvima 7221 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑡) ⊆ 𝑃𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
213198, 210, 211, 212syl3anc 1372 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
214204simprd 495 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡 ∈ 𝒫 𝐵)
215214elpwid 4582 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡𝐵)
216 f1imacnv 6830 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑡𝐵) → (𝐹 “ (𝐹𝑡)) = 𝑡)
217203, 215, 216syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) = 𝑡)
218213, 217eleqtrd 2835 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝑡)
219 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦))
220 eleq1 2821 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑢) → (𝑥 ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽𝑦)))
221 oveq2 7407 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐹𝑣) → (𝑎𝐽𝑦) = (𝑎𝐽(𝐹𝑣)))
222221eleq2d 2819 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑣) → ((𝐹𝑢) ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣))))
223220, 222rspc2va 3611 . . . . . . . . . . . . . 14 ((((𝐹𝑢) ∈ 𝑠 ∧ (𝐹𝑣) ∈ 𝑡) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
224209, 218, 219, 223syl21anc 837 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
225 simp-6l 786 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
226225, 21sylancom 588 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
227 simp-6l 786 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
228227, 23sylancom 588 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
229 simp-4r 783 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑎𝐵)
230210, 211sseldd 3957 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣𝑃)
231 f1ocnvdm 7273 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹𝑣) ∈ 𝐵)
232196, 230, 231syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝐵)
233199, 200sseldd 3957 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢𝑃)
234 f1ocnvdm 7273 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹𝑢) ∈ 𝐵)
235196, 233, 234syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝐵)
2363, 4, 5, 17, 18, 19, 196, 226, 228, 229, 232, 235f1otrgitv 28781 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)) ↔ (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣)))))
237224, 236mpbid 232 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))))
238 f1ocnvfv2 7265 . . . . . . . . . . . . 13 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹‘(𝐹𝑢)) = 𝑢)
239196, 233, 238syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) = 𝑢)
240 f1ocnvfv2 7265 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹‘(𝐹𝑣)) = 𝑣)
241196, 230, 240syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑣)) = 𝑣)
242241oveq2d 7415 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))) = ((𝐹𝑎)𝐼𝑣))
243237, 239, 2423eltr3d 2847 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2442433impa 1109 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2453, 4, 5, 184, 190, 192, 195, 244axtgcont 28380 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑐𝑃𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
246183, 245r19.29a 3146 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
247246rexlimdva2 3141 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
248247ralrimivva 3185 . . . . . 6 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
24973, 131, 2483jca 1128 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))))
25017, 18, 19istrkgb 28366 . . . . 5 (𝐻 ∈ TarskiGB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))))
2512, 249, 250sylanbrc 583 . . . 4 (𝜑𝐻 ∈ TarskiGB)
25256, 251elind 4173 . . 3 (𝜑𝐻 ∈ (TarskiGC ∩ TarskiGB))
2536ad9antr 742 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐺 ∈ TarskiG)
25410ad9antr 742 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵𝑃)
255 simp-9r 793 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝐵)
256254, 255ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ∈ 𝑃)
257 simp-8r 791 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦𝐵)
258254, 257ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ 𝑃)
259 simp-7r 789 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑧𝐵)
260254, 259ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑧) ∈ 𝑃)
261 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑎𝐵)
262254, 261ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑎) ∈ 𝑃)
263 simp-4r 783 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏𝐵)
264254, 263ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ 𝑃)
265 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑐𝐵)
266254, 265ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑐) ∈ 𝑃)
267 simp-6r 787 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑢𝐵)
268254, 267ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑢) ∈ 𝑃)
269 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑣𝐵)
270254, 269ffvelcdmd 7071 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑣) ∈ 𝑃)
2718ad9antr 742 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵1-1-onto𝑃)
272271, 255jca 511 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹:𝐵1-1-onto𝑃𝑥𝐵))
273 simprl1 1218 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝑦)
274 dff1o6 7263 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐵1-1-onto𝑃 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝑃 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
275274simp3bi 1147 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝐵1-1-onto𝑃 → ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
276275r19.21bi 3232 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝐵1-1-onto𝑃𝑥𝐵) → ∀𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
277276r19.21bi 3232 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
278277necon3d 2952 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
279278imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑦) → (𝐹𝑥) ≠ (𝐹𝑦))
280272, 257, 273, 279syl21anc 837 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ≠ (𝐹𝑦))
281 simprl2 1219 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦 ∈ (𝑥𝐽𝑧))
28221ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
283282ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
284283imp 406 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
28523ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
286285ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
287286imp 406 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2883, 4, 5, 17, 18, 19, 271, 284, 287, 255, 259, 257f1otrgitv 28781 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
289281, 288mpbid 232 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
290 simprl3 1220 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏 ∈ (𝑎𝐽𝑐))
2913, 4, 5, 17, 18, 19, 271, 284, 287, 261, 265, 263f1otrgitv 28781 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏 ∈ (𝑎𝐽𝑐) ↔ (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐))))
292290, 291mpbid 232 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐)))
293 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))
294293simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)))
295294simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = (𝑎𝐸𝑏))
2963, 4, 5, 17, 18, 19, 271, 284, 287, 255, 257f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
2973, 4, 5, 17, 18, 19, 271, 284, 287, 261, 263f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
298295, 296, 2973eqtr3d 2777 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
299294simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = (𝑏𝐸𝑐))
3003, 4, 5, 17, 18, 19, 271, 284, 287, 257, 259f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = ((𝐹𝑦)𝐷(𝐹𝑧)))
3013, 4, 5, 17, 18, 19, 271, 284, 287, 263, 265f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑐) = ((𝐹𝑏)𝐷(𝐹𝑐)))
302299, 300, 3013eqtr3d 2777 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑧)) = ((𝐹𝑏)𝐷(𝐹𝑐)))
303293simprd 495 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))
304303simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = (𝑎𝐸𝑣))
3053, 4, 5, 17, 18, 19, 271, 284, 287, 255, 267f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = ((𝐹𝑥)𝐷(𝐹𝑢)))
3063, 4, 5, 17, 18, 19, 271, 284, 287, 261, 269f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑣) = ((𝐹𝑎)𝐷(𝐹𝑣)))
307304, 305, 3063eqtr3d 2777 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑢)) = ((𝐹𝑎)𝐷(𝐹𝑣)))
308303simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = (𝑏𝐸𝑣))
3093, 4, 5, 17, 18, 19, 271, 284, 287, 257, 267f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = ((𝐹𝑦)𝐷(𝐹𝑢)))
3103, 4, 5, 17, 18, 19, 271, 284, 287, 263, 269f1otrgds 28780 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑣) = ((𝐹𝑏)𝐷(𝐹𝑣)))
311308, 309, 3103eqtr3d 2777 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑢)) = ((𝐹𝑏)𝐷(𝐹𝑣)))
3123, 4, 5, 253, 256, 258, 260, 262, 264, 266, 268, 270, 280, 289, 292, 298, 302, 307, 311axtg5seg 28376 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑧)𝐷(𝐹𝑢)) = ((𝐹𝑐)𝐷(𝐹𝑣)))
3133, 4, 5, 17, 18, 19, 271, 284, 287, 259, 267f1otrgds 28780 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = ((𝐹𝑧)𝐷(𝐹𝑢)))
3143, 4, 5, 17, 18, 19, 271, 284, 287, 265, 269f1otrgds 28780 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑐𝐸𝑣) = ((𝐹𝑐)𝐷(𝐹𝑣)))
315312, 313, 3143eqtr4d 2779 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣))
316315ex 412 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) → (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
317316ralrimiva 3130 . . . . . . . . . . . . 13 ((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ∀𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
318317ralrimiva 3130 . . . . . . . . . . . 12 (((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) → ∀𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
319318ralrimiva 3130 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
320319ralrimiva 3130 . . . . . . . . . 10 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
321320ralrimiva 3130 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ∀𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
322321ralrimiva 3130 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
323322ralrimiva 3130 . . . . . . 7 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
324323ralrimiva 3130 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
325 simp-4l 782 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝜑)
326 simplr 768 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑤𝑃)
327 simprl 770 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤))
328325, 8syl 17 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝐹:𝐵1-1-onto𝑃)
329 f1ocnvfv2 7265 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑤𝑃) → (𝐹‘(𝐹𝑤)) = 𝑤)
330328, 326, 329syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹‘(𝐹𝑤)) = 𝑤)
331330oveq2d 7415 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))) = ((𝐹𝑥)𝐼𝑤))
332327, 331eleqtrrd 2836 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))))
333325, 21sylan 580 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
334325, 23sylan 580 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
33512ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑥𝐵)
33676ffvelcdmda 7070 . . . . . . . . . . . . 13 ((𝜑𝑤𝑃) → (𝐹𝑤) ∈ 𝐵)
337325, 326, 336syl2anc 584 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑤) ∈ 𝐵)
33814ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦𝐵)
3393, 4, 5, 17, 18, 19, 328, 333, 334, 335, 337, 338f1otrgitv 28781 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤)))))
340332, 339mpbird 257 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦 ∈ (𝑥𝐽(𝐹𝑤)))
3413, 4, 5, 17, 18, 19, 328, 333, 334, 338, 337f1otrgds 28780 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))))
342330oveq2d 7415 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))) = ((𝐹𝑦)𝐷𝑤))
343 simprr 772 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))
344341, 342, 3433eqtrd 2773 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
345 simprl 770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
346345ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑎𝐵)
347 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
348347ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑏𝐵)
3493, 4, 5, 17, 18, 19, 328, 333, 334, 346, 348f1otrgds 28780 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
350344, 349eqtr4d 2772 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))
351 oveq2 7407 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑥𝐽𝑧) = (𝑥𝐽(𝐹𝑤)))
352351eleq2d 2819 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ 𝑦 ∈ (𝑥𝐽(𝐹𝑤))))
353 oveq2 7407 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑦𝐸𝑧) = (𝑦𝐸(𝐹𝑤)))
354353eqeq1d 2736 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → ((𝑦𝐸𝑧) = (𝑎𝐸𝑏) ↔ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)))
355352, 354anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑤) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
356355adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤𝑃) ∧ 𝑧 = (𝐹𝑤)) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
357336, 356rspcedv 3592 . . . . . . . . . . 11 ((𝜑𝑤𝑃) → ((𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏))))
358357imp 406 . . . . . . . . . 10 (((𝜑𝑤𝑃) ∧ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
359325, 326, 340, 350, 358syl22anc 838 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3607adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐺 ∈ TarskiG)
36113adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑥) ∈ 𝑃)
36215adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑦) ∈ 𝑃)
36311adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐹:𝐵𝑃)
364363, 345ffvelcdmd 7071 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝑃)
365363, 347ffvelcdmd 7071 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝑃)
3663, 4, 5, 360, 361, 362, 364, 365axtgsegcon 28375 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑤𝑃 ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏))))
367359, 366r19.29a 3146 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
368367ralrimivva 3185 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
369368ralrimivva 3185 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3702, 324, 369jca32 515 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
37117, 18, 19istrkgcb 28367 . . . . 5 (𝐻 ∈ TarskiGCB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
372370, 371sylibr 234 . . . 4 (𝜑𝐻 ∈ TarskiGCB)
373 f1otrg.l . . . . 5 (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
37417, 18, 19istrkgl 28369 . . . . 5 (𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐻 ∈ V ∧ (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))})))
3752, 373, 374sylanbrc 583 . . . 4 (𝜑𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
376372, 375elind 4173 . . 3 (𝜑𝐻 ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
377252, 376elind 4173 . 2 (𝜑𝐻 ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
378 df-trkg 28364 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
379377, 378eleqtrrdi 2844 1 (𝜑𝐻 ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  {cab 2712  wne 2931  wral 3050  wrex 3059  {crab 3413  Vcvv 3457  [wsbc 3763  cdif 3921  cin 3923  wss 3924  𝒫 cpw 4573  {csn 4599  ccnv 5650  ran crn 5652  cima 5654   Fn wfn 6522  wf 6523  1-1wf1 6524  ontowfo 6525  1-1-ontowf1o 6526  cfv 6527  (class class class)co 7399  cmpo 7401  Basecbs 17213  distcds 17265  TarskiGcstrkg 28338  TarskiGCcstrkgc 28339  TarskiGBcstrkgb 28340  TarskiGCBcstrkgcb 28341  Itvcitv 28344  LineGclng 28345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-trkgc 28359  df-trkgb 28360  df-trkgcb 28361  df-trkg 28364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator