MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrg Structured version   Visualization version   GIF version

Theorem f1otrg 26649
Description: A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
f1otrkg.p 𝑃 = (Base‘𝐺)
f1otrkg.d 𝐷 = (dist‘𝐺)
f1otrkg.i 𝐼 = (Itv‘𝐺)
f1otrkg.b 𝐵 = (Base‘𝐻)
f1otrkg.e 𝐸 = (dist‘𝐻)
f1otrkg.j 𝐽 = (Itv‘𝐻)
f1otrkg.f (𝜑𝐹:𝐵1-1-onto𝑃)
f1otrkg.1 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
f1otrkg.2 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
f1otrg.h (𝜑𝐻𝑉)
f1otrg.g (𝜑𝐺 ∈ TarskiG)
f1otrg.l (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
Assertion
Ref Expression
f1otrg (𝜑𝐻 ∈ TarskiG)
Distinct variable groups:   𝑒,𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐷,𝑒,𝑓,𝑔   𝑒,𝐸,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐹,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐼,𝑓,𝑔,𝑥,𝑦   𝑒,𝐽,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑒,𝑔)   𝐼(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)

Proof of Theorem f1otrg
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1otrg.h . . . . . 6 (𝜑𝐻𝑉)
21elexd 3513 . . . . 5 (𝜑𝐻 ∈ V)
3 f1otrkg.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
4 f1otrkg.d . . . . . . . . 9 𝐷 = (dist‘𝐺)
5 f1otrkg.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
6 f1otrg.g . . . . . . . . . 10 (𝜑𝐺 ∈ TarskiG)
76adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ TarskiG)
8 f1otrkg.f . . . . . . . . . . . 12 (𝜑𝐹:𝐵1-1-onto𝑃)
9 f1of 6608 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵𝑃)
108, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝑃)
1110adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵𝑃)
12 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
1311, 12ffvelrnd 6845 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ 𝑃)
14 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
1511, 14ffvelrnd 6845 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ 𝑃)
163, 4, 5, 7, 13, 15axtgcgrrflx 26240 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑦)𝐷(𝐹𝑥)))
17 f1otrkg.b . . . . . . . . 9 𝐵 = (Base‘𝐻)
18 f1otrkg.e . . . . . . . . 9 𝐸 = (dist‘𝐻)
19 f1otrkg.j . . . . . . . . 9 𝐽 = (Itv‘𝐻)
208adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵1-1-onto𝑃)
21 f1otrkg.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
2221adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
23 f1otrkg.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2423adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
253, 4, 5, 17, 18, 19, 20, 22, 24, 12, 14f1otrgds 26647 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
263, 4, 5, 17, 18, 19, 20, 22, 24, 14, 12f1otrgds 26647 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦𝐸𝑥) = ((𝐹𝑦)𝐷(𝐹𝑥)))
2716, 25, 263eqtr4d 2864 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
2827ralrimivva 3189 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
29 f1of1 6607 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵1-1𝑃)
308, 29syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵1-1𝑃)
31303ad2ant1 1128 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1𝑃)
32 simp21 1201 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥𝐵)
33 simp22 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑦𝐵)
3432, 33jca 514 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐵𝑦𝐵))
3563ad2ant1 1128 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐺 ∈ TarskiG)
36103ad2ant1 1128 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵𝑃)
3736, 32ffvelrnd 6845 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) ∈ 𝑃)
3836, 33ffvelrnd 6845 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑦) ∈ 𝑃)
39 simp23 1203 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑧𝐵)
4036, 39ffvelrnd 6845 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑧) ∈ 𝑃)
41 simp3 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = (𝑧𝐸𝑧))
4283ad2ant1 1128 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1-onto𝑃)
43213ad2antl1 1180 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
44233ad2antl1 1180 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
453, 4, 5, 17, 18, 19, 42, 43, 44, 32, 33f1otrgds 26647 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
463, 4, 5, 17, 18, 19, 42, 43, 44, 39, 39f1otrgds 26647 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑧𝐸𝑧) = ((𝐹𝑧)𝐷(𝐹𝑧)))
4741, 45, 463eqtr3d 2862 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑧)𝐷(𝐹𝑧)))
483, 4, 5, 35, 37, 38, 40, 47axtgcgrid 26241 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) = (𝐹𝑦))
49 f1veqaeq 7007 . . . . . . . . . 10 ((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5049imp 409 . . . . . . . . 9 (((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
5131, 34, 48, 50syl21anc 835 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥 = 𝑦)
52513expia 1116 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5352ralrimivvva 3190 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5428, 53jca 514 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦)))
5517, 18, 19istrkgc 26232 . . . . 5 (𝐻 ∈ TarskiGC ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))))
562, 54, 55sylanbrc 585 . . . 4 (𝜑𝐻 ∈ TarskiGC)
5783ad2ant1 1128 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1-onto𝑃)
5857, 29syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1𝑃)
59 simp2 1132 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑥𝐵𝑦𝐵))
6063ad2ant1 1128 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐺 ∈ TarskiG)
61133adant3 1127 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) ∈ 𝑃)
62153adant3 1127 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ 𝑃)
63 simp3 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦 ∈ (𝑥𝐽𝑥))
64213ad2antl1 1180 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
65233ad2antl1 1180 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
66123adant3 1127 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥𝐵)
67143adant3 1127 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦𝐵)
683, 4, 5, 17, 18, 19, 57, 64, 65, 66, 66, 67f1otrgitv 26648 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑦 ∈ (𝑥𝐽𝑥) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥))))
6963, 68mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥)))
703, 4, 5, 60, 61, 62, 69axtgbtwnid 26244 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) = (𝐹𝑦))
7158, 59, 70, 50syl21anc 835 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥 = 𝑦)
72713expia 1116 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
7372ralrimivva 3189 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
74 f1ocnv 6620 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝑃𝐹:𝑃1-1-onto𝐵)
75 f1of 6608 . . . . . . . . . . . . . 14 (𝐹:𝑃1-1-onto𝐵𝐹:𝑃𝐵)
768, 74, 753syl 18 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃𝐵)
7776ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝑃𝐵)
78 simplr 767 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐𝑃)
7977, 78ffvelrnd 6845 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ 𝐵)
80 simpr 487 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → 𝑎 = (𝐹𝑐))
8180eleq1d 2895 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑢𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑢𝐽𝑦)))
8280eleq1d 2895 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑣𝐽𝑥) ↔ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
8381, 82anbi12d 632 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → ((𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)) ↔ ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥))))
84 simprl 769 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
8520ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵1-1-onto𝑃)
8685ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝐵1-1-onto𝑃)
87 f1ocnvfv2 7026 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → (𝐹‘(𝐹𝑐)) = 𝑐)
8887eleq1d 2895 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
8986, 78, 88syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
9084, 89mpbird 259 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
9122ad4ant14 750 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9291ad4ant14 750 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9324ad4ant14 750 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
9493ad4ant14 750 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
95 simplr2 1211 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢𝐵)
9695ad2antrr 724 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑢𝐵)
9714ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑦𝐵)
9897ad2antrr 724 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑦𝐵)
993, 4, 5, 17, 18, 19, 86, 92, 94, 96, 98, 79f1otrgitv 26648 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
10090, 99mpbird 259 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑢𝐽𝑦))
101 simprr 771 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
10287eleq1d 2895 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
10386, 78, 102syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
104101, 103mpbird 259 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
105 simplr3 1212 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣𝐵)
106105ad2antrr 724 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑣𝐵)
10712ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑥𝐵)
108107ad2antrr 724 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑥𝐵)
1093, 4, 5, 17, 18, 19, 86, 92, 94, 106, 108, 79f1otrgitv 26648 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑣𝐽𝑥) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
110104, 109mpbird 259 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑣𝐽𝑥))
111100, 110jca 514 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
11279, 83, 111rspcedvd 3624 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
1137ad2antrr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐺 ∈ TarskiG)
11411ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵𝑃)
115114, 107ffvelrnd 6845 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑥) ∈ 𝑃)
116114, 97ffvelrnd 6845 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑦) ∈ 𝑃)
117 simplr1 1210 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑧𝐵)
118114, 117ffvelrnd 6845 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑧) ∈ 𝑃)
119114, 95ffvelrnd 6845 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ 𝑃)
120114, 105ffvelrnd 6845 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ 𝑃)
121 simprl 769 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢 ∈ (𝑥𝐽𝑧))
1223, 4, 5, 17, 18, 19, 85, 91, 93, 107, 117, 95f1otrgitv 26648 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑢 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
123121, 122mpbid 234 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
124 simprr 771 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣 ∈ (𝑦𝐽𝑧))
1253, 4, 5, 17, 18, 19, 85, 91, 93, 97, 117, 105f1otrgitv 26648 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑣 ∈ (𝑦𝐽𝑧) ↔ (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧))))
126124, 125mpbid 234 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧)))
1273, 4, 5, 113, 115, 116, 118, 119, 120, 123, 126axtgpasch 26245 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑐𝑃 (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
128112, 127r19.29a 3287 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
129128ex 415 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) → ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
130129ralrimivvva 3190 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
131130ralrimivva 3189 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
1328ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
133 simpllr 774 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
134132, 133, 87syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) = 𝑐)
135 ffn 6507 . . . . . . . . . . . . . . . . 17 (𝐹:𝐵𝑃𝐹 Fn 𝐵)
136132, 9, 1353syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹 Fn 𝐵)
137 simp-4r 782 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
138137simpld 497 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ∈ 𝒫 𝐵)
139138elpwid 4551 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
140139adantlr 713 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
141 simprl 769 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
142 fnfvima 6987 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑠𝐵𝑥𝑠) → (𝐹𝑥) ∈ (𝐹𝑠))
143136, 140, 141, 142syl3anc 1366 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑥) ∈ (𝐹𝑠))
144137simprd 498 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ∈ 𝒫 𝐵)
145144elpwid 4551 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
146145adantlr 713 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
147 simprr 771 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
148 fnfvima 6987 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑡𝐵𝑦𝑡) → (𝐹𝑦) ∈ (𝐹𝑡))
149136, 146, 147, 148syl3anc 1366 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑦) ∈ (𝐹𝑡))
150 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
151 oveq1 7155 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝐹𝑥) → (𝑒𝐼𝑓) = ((𝐹𝑥)𝐼𝑓))
152151eleq2d 2896 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐹𝑥) → (𝑐 ∈ (𝑒𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼𝑓)))
153 oveq2 7156 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐹𝑦) → ((𝐹𝑥)𝐼𝑓) = ((𝐹𝑥)𝐼(𝐹𝑦)))
154153eleq2d 2896 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑦) → (𝑐 ∈ ((𝐹𝑥)𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
155152, 154rspc2va 3632 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∈ (𝐹𝑠) ∧ (𝐹𝑦) ∈ (𝐹𝑡)) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
156143, 149, 150, 155syl21anc 835 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
157134, 156eqeltrd 2911 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
1588ad4antr 730 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
159 simp-5l 783 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
160159, 21sylancom 590 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
161 simp-5l 783 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
162161, 23sylancom 590 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
163 simprl 769 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
164139, 163sseldd 3966 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝐵)
165 simprr 771 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
166145, 165sseldd 3966 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝐵)
16776ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝑃𝐵)
168 simplr 767 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
169167, 168ffvelrnd 6845 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ 𝐵)
1703, 4, 5, 17, 18, 19, 158, 160, 162, 164, 166, 169f1otrgitv 26648 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
171170adantlr 713 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
172157, 171mpbird 259 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ (𝑥𝐽𝑦))
173172ralrimivva 3189 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
174173adantllr 717 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
17576ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝐹:𝑃𝐵)
176 simpr 487 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝑐𝑃)
177175, 176ffvelrnd 6845 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (𝐹𝑐) ∈ 𝐵)
178 eleq1 2898 . . . . . . . . . . . . . 14 (𝑏 = (𝐹𝑐) → (𝑏 ∈ (𝑥𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
1791782ralbidv 3197 . . . . . . . . . . . . 13 (𝑏 = (𝐹𝑐) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
180179adantl 484 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ 𝑏 = (𝐹𝑐)) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
181177, 180rspcedv 3614 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
182181adantr 483 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
183174, 182mpd 15 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
1846ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐺 ∈ TarskiG)
185 imassrn 5933 . . . . . . . . . . 11 (𝐹𝑠) ⊆ ran 𝐹
186 f1ofo 6615 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵onto𝑃)
187 forn 6586 . . . . . . . . . . . . 13 (𝐹:𝐵onto𝑃 → ran 𝐹 = 𝑃)
1888, 186, 1873syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 = 𝑃)
189188ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ran 𝐹 = 𝑃)
190185, 189sseqtrid 4017 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑠) ⊆ 𝑃)
191 imassrn 5933 . . . . . . . . . . 11 (𝐹𝑡) ⊆ ran 𝐹
192191, 189sseqtrid 4017 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑡) ⊆ 𝑃)
19310ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐹:𝐵𝑃)
194 simplr 767 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝑎𝐵)
195193, 194ffvelrnd 6845 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑎) ∈ 𝑃)
1968ad5antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1-onto𝑃)
197 ffn 6507 . . . . . . . . . . . . . . . . 17 (𝐹:𝑃𝐵𝐹 Fn 𝑃)
198196, 74, 75, 1974syl 19 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹 Fn 𝑃)
199190ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑠) ⊆ 𝑃)
200 simplr 767 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ (𝐹𝑠))
201 fnfvima 6987 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑠) ⊆ 𝑃𝑢 ∈ (𝐹𝑠)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
202198, 199, 200, 201syl3anc 1366 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
203196, 29syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1𝑃)
204 simp-5r 784 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
205204simpld 497 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠 ∈ 𝒫 𝐵)
206205elpwid 4551 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠𝐵)
207 f1imacnv 6624 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑠𝐵) → (𝐹 “ (𝐹𝑠)) = 𝑠)
208203, 206, 207syl2anc 586 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑠)) = 𝑠)
209202, 208eleqtrd 2913 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝑠)
210192ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑡) ⊆ 𝑃)
211 simpr 487 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣 ∈ (𝐹𝑡))
212 fnfvima 6987 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑡) ⊆ 𝑃𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
213198, 210, 211, 212syl3anc 1366 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
214204simprd 498 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡 ∈ 𝒫 𝐵)
215214elpwid 4551 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡𝐵)
216 f1imacnv 6624 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑡𝐵) → (𝐹 “ (𝐹𝑡)) = 𝑡)
217203, 215, 216syl2anc 586 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) = 𝑡)
218213, 217eleqtrd 2913 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝑡)
219 simpllr 774 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦))
220 eleq1 2898 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑢) → (𝑥 ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽𝑦)))
221 oveq2 7156 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐹𝑣) → (𝑎𝐽𝑦) = (𝑎𝐽(𝐹𝑣)))
222221eleq2d 2896 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑣) → ((𝐹𝑢) ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣))))
223220, 222rspc2va 3632 . . . . . . . . . . . . . 14 ((((𝐹𝑢) ∈ 𝑠 ∧ (𝐹𝑣) ∈ 𝑡) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
224209, 218, 219, 223syl21anc 835 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
225 simp-6l 785 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
226225, 21sylancom 590 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
227 simp-6l 785 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
228227, 23sylancom 590 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
229 simp-4r 782 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑎𝐵)
230210, 211sseldd 3966 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣𝑃)
231 f1ocnvdm 7033 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹𝑣) ∈ 𝐵)
232196, 230, 231syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝐵)
233199, 200sseldd 3966 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢𝑃)
234 f1ocnvdm 7033 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹𝑢) ∈ 𝐵)
235196, 233, 234syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝐵)
2363, 4, 5, 17, 18, 19, 196, 226, 228, 229, 232, 235f1otrgitv 26648 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)) ↔ (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣)))))
237224, 236mpbid 234 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))))
238 f1ocnvfv2 7026 . . . . . . . . . . . . 13 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹‘(𝐹𝑢)) = 𝑢)
239196, 233, 238syl2anc 586 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) = 𝑢)
240 f1ocnvfv2 7026 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹‘(𝐹𝑣)) = 𝑣)
241196, 230, 240syl2anc 586 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑣)) = 𝑣)
242241oveq2d 7164 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))) = ((𝐹𝑎)𝐼𝑣))
243237, 239, 2423eltr3d 2925 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2442433impa 1105 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2453, 4, 5, 184, 190, 192, 195, 244axtgcont 26247 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑐𝑃𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
246183, 245r19.29a 3287 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
247246rexlimdva2 3285 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
248247ralrimivva 3189 . . . . . 6 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
24973, 131, 2483jca 1123 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))))
25017, 18, 19istrkgb 26233 . . . . 5 (𝐻 ∈ TarskiGB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))))
2512, 249, 250sylanbrc 585 . . . 4 (𝜑𝐻 ∈ TarskiGB)
25256, 251elind 4169 . . 3 (𝜑𝐻 ∈ (TarskiGC ∩ TarskiGB))
2536ad9antr 740 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐺 ∈ TarskiG)
25410ad9antr 740 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵𝑃)
255 simp-9r 792 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝐵)
256254, 255ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ∈ 𝑃)
257 simp-8r 790 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦𝐵)
258254, 257ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ 𝑃)
259 simp-7r 788 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑧𝐵)
260254, 259ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑧) ∈ 𝑃)
261 simp-5r 784 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑎𝐵)
262254, 261ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑎) ∈ 𝑃)
263 simp-4r 782 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏𝐵)
264254, 263ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ 𝑃)
265 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑐𝐵)
266254, 265ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑐) ∈ 𝑃)
267 simp-6r 786 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑢𝐵)
268254, 267ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑢) ∈ 𝑃)
269 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑣𝐵)
270254, 269ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑣) ∈ 𝑃)
2718ad9antr 740 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵1-1-onto𝑃)
272271, 255jca 514 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹:𝐵1-1-onto𝑃𝑥𝐵))
273 simprl1 1213 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝑦)
274 dff1o6 7024 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐵1-1-onto𝑃 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝑃 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
275274simp3bi 1142 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝐵1-1-onto𝑃 → ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
276275r19.21bi 3206 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝐵1-1-onto𝑃𝑥𝐵) → ∀𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
277276r19.21bi 3206 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
278277necon3d 3035 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
279278imp 409 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑦) → (𝐹𝑥) ≠ (𝐹𝑦))
280272, 257, 273, 279syl21anc 835 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ≠ (𝐹𝑦))
281 simprl2 1214 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦 ∈ (𝑥𝐽𝑧))
28221ex 415 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
283282ad9antr 740 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
284283imp 409 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
28523ex 415 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
286285ad9antr 740 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
287286imp 409 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2883, 4, 5, 17, 18, 19, 271, 284, 287, 255, 259, 257f1otrgitv 26648 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
289281, 288mpbid 234 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
290 simprl3 1215 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏 ∈ (𝑎𝐽𝑐))
2913, 4, 5, 17, 18, 19, 271, 284, 287, 261, 265, 263f1otrgitv 26648 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏 ∈ (𝑎𝐽𝑐) ↔ (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐))))
292290, 291mpbid 234 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐)))
293 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))
294293simpld 497 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)))
295294simpld 497 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = (𝑎𝐸𝑏))
2963, 4, 5, 17, 18, 19, 271, 284, 287, 255, 257f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
2973, 4, 5, 17, 18, 19, 271, 284, 287, 261, 263f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
298295, 296, 2973eqtr3d 2862 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
299294simprd 498 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = (𝑏𝐸𝑐))
3003, 4, 5, 17, 18, 19, 271, 284, 287, 257, 259f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = ((𝐹𝑦)𝐷(𝐹𝑧)))
3013, 4, 5, 17, 18, 19, 271, 284, 287, 263, 265f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑐) = ((𝐹𝑏)𝐷(𝐹𝑐)))
302299, 300, 3013eqtr3d 2862 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑧)) = ((𝐹𝑏)𝐷(𝐹𝑐)))
303293simprd 498 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))
304303simpld 497 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = (𝑎𝐸𝑣))
3053, 4, 5, 17, 18, 19, 271, 284, 287, 255, 267f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = ((𝐹𝑥)𝐷(𝐹𝑢)))
3063, 4, 5, 17, 18, 19, 271, 284, 287, 261, 269f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑣) = ((𝐹𝑎)𝐷(𝐹𝑣)))
307304, 305, 3063eqtr3d 2862 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑢)) = ((𝐹𝑎)𝐷(𝐹𝑣)))
308303simprd 498 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = (𝑏𝐸𝑣))
3093, 4, 5, 17, 18, 19, 271, 284, 287, 257, 267f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = ((𝐹𝑦)𝐷(𝐹𝑢)))
3103, 4, 5, 17, 18, 19, 271, 284, 287, 263, 269f1otrgds 26647 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑣) = ((𝐹𝑏)𝐷(𝐹𝑣)))
311308, 309, 3103eqtr3d 2862 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑢)) = ((𝐹𝑏)𝐷(𝐹𝑣)))
3123, 4, 5, 253, 256, 258, 260, 262, 264, 266, 268, 270, 280, 289, 292, 298, 302, 307, 311axtg5seg 26243 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑧)𝐷(𝐹𝑢)) = ((𝐹𝑐)𝐷(𝐹𝑣)))
3133, 4, 5, 17, 18, 19, 271, 284, 287, 259, 267f1otrgds 26647 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = ((𝐹𝑧)𝐷(𝐹𝑢)))
3143, 4, 5, 17, 18, 19, 271, 284, 287, 265, 269f1otrgds 26647 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑐𝐸𝑣) = ((𝐹𝑐)𝐷(𝐹𝑣)))
315312, 313, 3143eqtr4d 2864 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣))
316315ex 415 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) → (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
317316ralrimiva 3180 . . . . . . . . . . . . 13 ((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ∀𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
318317ralrimiva 3180 . . . . . . . . . . . 12 (((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) → ∀𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
319318ralrimiva 3180 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
320319ralrimiva 3180 . . . . . . . . . 10 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
321320ralrimiva 3180 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ∀𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
322321ralrimiva 3180 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
323322ralrimiva 3180 . . . . . . 7 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
324323ralrimiva 3180 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
325 simp-4l 781 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝜑)
326 simplr 767 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑤𝑃)
327 simprl 769 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤))
328325, 8syl 17 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝐹:𝐵1-1-onto𝑃)
329 f1ocnvfv2 7026 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑤𝑃) → (𝐹‘(𝐹𝑤)) = 𝑤)
330328, 326, 329syl2anc 586 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹‘(𝐹𝑤)) = 𝑤)
331330oveq2d 7164 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))) = ((𝐹𝑥)𝐼𝑤))
332327, 331eleqtrrd 2914 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))))
333325, 21sylan 582 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
334325, 23sylan 582 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
33512ad3antrrr 728 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑥𝐵)
33676ffvelrnda 6844 . . . . . . . . . . . . 13 ((𝜑𝑤𝑃) → (𝐹𝑤) ∈ 𝐵)
337325, 326, 336syl2anc 586 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑤) ∈ 𝐵)
33814ad3antrrr 728 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦𝐵)
3393, 4, 5, 17, 18, 19, 328, 333, 334, 335, 337, 338f1otrgitv 26648 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤)))))
340332, 339mpbird 259 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦 ∈ (𝑥𝐽(𝐹𝑤)))
3413, 4, 5, 17, 18, 19, 328, 333, 334, 338, 337f1otrgds 26647 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))))
342330oveq2d 7164 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))) = ((𝐹𝑦)𝐷𝑤))
343 simprr 771 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))
344341, 342, 3433eqtrd 2858 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
345 simprl 769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
346345ad2antrr 724 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑎𝐵)
347 simprr 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
348347ad2antrr 724 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑏𝐵)
3493, 4, 5, 17, 18, 19, 328, 333, 334, 346, 348f1otrgds 26647 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
350344, 349eqtr4d 2857 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))
351 oveq2 7156 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑥𝐽𝑧) = (𝑥𝐽(𝐹𝑤)))
352351eleq2d 2896 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ 𝑦 ∈ (𝑥𝐽(𝐹𝑤))))
353 oveq2 7156 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑦𝐸𝑧) = (𝑦𝐸(𝐹𝑤)))
354353eqeq1d 2821 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → ((𝑦𝐸𝑧) = (𝑎𝐸𝑏) ↔ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)))
355352, 354anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑤) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
356355adantl 484 . . . . . . . . . . . 12 (((𝜑𝑤𝑃) ∧ 𝑧 = (𝐹𝑤)) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
357336, 356rspcedv 3614 . . . . . . . . . . 11 ((𝜑𝑤𝑃) → ((𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏))))
358357imp 409 . . . . . . . . . 10 (((𝜑𝑤𝑃) ∧ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
359325, 326, 340, 350, 358syl22anc 836 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3607adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐺 ∈ TarskiG)
36113adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑥) ∈ 𝑃)
36215adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑦) ∈ 𝑃)
36311adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐹:𝐵𝑃)
364363, 345ffvelrnd 6845 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝑃)
365363, 347ffvelrnd 6845 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝑃)
3663, 4, 5, 360, 361, 362, 364, 365axtgsegcon 26242 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑤𝑃 ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏))))
367359, 366r19.29a 3287 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
368367ralrimivva 3189 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
369368ralrimivva 3189 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3702, 324, 369jca32 518 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
37117, 18, 19istrkgcb 26234 . . . . 5 (𝐻 ∈ TarskiGCB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
372370, 371sylibr 236 . . . 4 (𝜑𝐻 ∈ TarskiGCB)
373 f1otrg.l . . . . 5 (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
37417, 18, 19istrkgl 26236 . . . . 5 (𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐻 ∈ V ∧ (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))})))
3752, 373, 374sylanbrc 585 . . . 4 (𝜑𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
376372, 375elind 4169 . . 3 (𝜑𝐻 ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
377252, 376elind 4169 . 2 (𝜑𝐻 ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
378 df-trkg 26231 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
379377, 378eleqtrrdi 2922 1 (𝜑𝐻 ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1081  w3a 1082   = wceq 1531  wcel 2108  {cab 2797  wne 3014  wral 3136  wrex 3137  {crab 3140  Vcvv 3493  [wsbc 3770  cdif 3931  cin 3933  wss 3934  𝒫 cpw 4537  {csn 4559  ccnv 5547  ran crn 5549  cima 5551   Fn wfn 6343  wf 6344  1-1wf1 6345  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  cmpo 7150  Basecbs 16475  distcds 16566  TarskiGcstrkg 26208  TarskiGCcstrkgc 26209  TarskiGBcstrkgb 26210  TarskiGCBcstrkgcb 26211  Itvcitv 26214  LineGclng 26215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-trkgc 26226  df-trkgb 26227  df-trkgcb 26228  df-trkg 26231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator