MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrg Structured version   Visualization version   GIF version

Theorem f1otrg 28849
Description: A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
f1otrkg.p 𝑃 = (Base‘𝐺)
f1otrkg.d 𝐷 = (dist‘𝐺)
f1otrkg.i 𝐼 = (Itv‘𝐺)
f1otrkg.b 𝐵 = (Base‘𝐻)
f1otrkg.e 𝐸 = (dist‘𝐻)
f1otrkg.j 𝐽 = (Itv‘𝐻)
f1otrkg.f (𝜑𝐹:𝐵1-1-onto𝑃)
f1otrkg.1 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
f1otrkg.2 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
f1otrg.h (𝜑𝐻𝑉)
f1otrg.g (𝜑𝐺 ∈ TarskiG)
f1otrg.l (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
Assertion
Ref Expression
f1otrg (𝜑𝐻 ∈ TarskiG)
Distinct variable groups:   𝑒,𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐷,𝑒,𝑓,𝑔   𝑒,𝐸,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐹,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐼,𝑓,𝑔,𝑥,𝑦   𝑒,𝐽,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑒,𝑔)   𝐼(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)

Proof of Theorem f1otrg
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1otrg.h . . . . . 6 (𝜑𝐻𝑉)
21elexd 3460 . . . . 5 (𝜑𝐻 ∈ V)
3 f1otrkg.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
4 f1otrkg.d . . . . . . . . 9 𝐷 = (dist‘𝐺)
5 f1otrkg.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
6 f1otrg.g . . . . . . . . . 10 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ TarskiG)
8 f1otrkg.f . . . . . . . . . . . 12 (𝜑𝐹:𝐵1-1-onto𝑃)
9 f1of 6763 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵𝑃)
108, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝑃)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵𝑃)
12 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
1311, 12ffvelcdmd 7018 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ 𝑃)
14 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
1511, 14ffvelcdmd 7018 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ 𝑃)
163, 4, 5, 7, 13, 15axtgcgrrflx 28440 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑦)𝐷(𝐹𝑥)))
17 f1otrkg.b . . . . . . . . 9 𝐵 = (Base‘𝐻)
18 f1otrkg.e . . . . . . . . 9 𝐸 = (dist‘𝐻)
19 f1otrkg.j . . . . . . . . 9 𝐽 = (Itv‘𝐻)
208adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵1-1-onto𝑃)
21 f1otrkg.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
2221adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
23 f1otrkg.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2423adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
253, 4, 5, 17, 18, 19, 20, 22, 24, 12, 14f1otrgds 28847 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
263, 4, 5, 17, 18, 19, 20, 22, 24, 14, 12f1otrgds 28847 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦𝐸𝑥) = ((𝐹𝑦)𝐷(𝐹𝑥)))
2716, 25, 263eqtr4d 2776 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
2827ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
29 f1of1 6762 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵1-1𝑃)
308, 29syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵1-1𝑃)
31303ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1𝑃)
32 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥𝐵)
33 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑦𝐵)
3432, 33jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐵𝑦𝐵))
3563ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐺 ∈ TarskiG)
36103ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵𝑃)
3736, 32ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) ∈ 𝑃)
3836, 33ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑦) ∈ 𝑃)
39 simp23 1209 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑧𝐵)
4036, 39ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑧) ∈ 𝑃)
41 simp3 1138 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = (𝑧𝐸𝑧))
4283ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1-onto𝑃)
43213ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
44233ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
453, 4, 5, 17, 18, 19, 42, 43, 44, 32, 33f1otrgds 28847 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
463, 4, 5, 17, 18, 19, 42, 43, 44, 39, 39f1otrgds 28847 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑧𝐸𝑧) = ((𝐹𝑧)𝐷(𝐹𝑧)))
4741, 45, 463eqtr3d 2774 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑧)𝐷(𝐹𝑧)))
483, 4, 5, 35, 37, 38, 40, 47axtgcgrid 28441 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) = (𝐹𝑦))
49 f1veqaeq 7190 . . . . . . . . . 10 ((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5049imp 406 . . . . . . . . 9 (((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
5131, 34, 48, 50syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥 = 𝑦)
52513expia 1121 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5352ralrimivvva 3178 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5428, 53jca 511 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦)))
5517, 18, 19istrkgc 28432 . . . . 5 (𝐻 ∈ TarskiGC ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))))
562, 54, 55sylanbrc 583 . . . 4 (𝜑𝐻 ∈ TarskiGC)
5783ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1-onto𝑃)
5857, 29syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1𝑃)
59 simp2 1137 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑥𝐵𝑦𝐵))
6063ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐺 ∈ TarskiG)
61133adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) ∈ 𝑃)
62153adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ 𝑃)
63 simp3 1138 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦 ∈ (𝑥𝐽𝑥))
64213ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
65233ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
66123adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥𝐵)
67143adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦𝐵)
683, 4, 5, 17, 18, 19, 57, 64, 65, 66, 66, 67f1otrgitv 28848 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑦 ∈ (𝑥𝐽𝑥) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥))))
6963, 68mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥)))
703, 4, 5, 60, 61, 62, 69axtgbtwnid 28444 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) = (𝐹𝑦))
7158, 59, 70, 50syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥 = 𝑦)
72713expia 1121 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
7372ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
74 f1ocnv 6775 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝑃𝐹:𝑃1-1-onto𝐵)
75 f1of 6763 . . . . . . . . . . . . . 14 (𝐹:𝑃1-1-onto𝐵𝐹:𝑃𝐵)
768, 74, 753syl 18 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃𝐵)
7776ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝑃𝐵)
78 simplr 768 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐𝑃)
7977, 78ffvelcdmd 7018 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ 𝐵)
80 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → 𝑎 = (𝐹𝑐))
8180eleq1d 2816 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑢𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑢𝐽𝑦)))
8280eleq1d 2816 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑣𝐽𝑥) ↔ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
8381, 82anbi12d 632 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → ((𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)) ↔ ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥))))
84 simprl 770 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
8520ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵1-1-onto𝑃)
8685ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝐵1-1-onto𝑃)
87 f1ocnvfv2 7211 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → (𝐹‘(𝐹𝑐)) = 𝑐)
8887eleq1d 2816 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
8986, 78, 88syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
9084, 89mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
9122ad4ant14 752 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9291ad4ant14 752 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9324ad4ant14 752 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
9493ad4ant14 752 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
95 simplr2 1217 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢𝐵)
9695ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑢𝐵)
9714ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑦𝐵)
9897ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑦𝐵)
993, 4, 5, 17, 18, 19, 86, 92, 94, 96, 98, 79f1otrgitv 28848 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
10090, 99mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑢𝐽𝑦))
101 simprr 772 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
10287eleq1d 2816 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
10386, 78, 102syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
104101, 103mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
105 simplr3 1218 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣𝐵)
106105ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑣𝐵)
10712ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑥𝐵)
108107ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑥𝐵)
1093, 4, 5, 17, 18, 19, 86, 92, 94, 106, 108, 79f1otrgitv 28848 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑣𝐽𝑥) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
110104, 109mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑣𝐽𝑥))
111100, 110jca 511 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
11279, 83, 111rspcedvd 3574 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
1137ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐺 ∈ TarskiG)
11411ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵𝑃)
115114, 107ffvelcdmd 7018 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑥) ∈ 𝑃)
116114, 97ffvelcdmd 7018 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑦) ∈ 𝑃)
117 simplr1 1216 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑧𝐵)
118114, 117ffvelcdmd 7018 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑧) ∈ 𝑃)
119114, 95ffvelcdmd 7018 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ 𝑃)
120114, 105ffvelcdmd 7018 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ 𝑃)
121 simprl 770 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢 ∈ (𝑥𝐽𝑧))
1223, 4, 5, 17, 18, 19, 85, 91, 93, 107, 117, 95f1otrgitv 28848 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑢 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
123121, 122mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
124 simprr 772 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣 ∈ (𝑦𝐽𝑧))
1253, 4, 5, 17, 18, 19, 85, 91, 93, 97, 117, 105f1otrgitv 28848 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑣 ∈ (𝑦𝐽𝑧) ↔ (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧))))
126124, 125mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧)))
1273, 4, 5, 113, 115, 116, 118, 119, 120, 123, 126axtgpasch 28445 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑐𝑃 (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
128112, 127r19.29a 3140 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
129128ex 412 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) → ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
130129ralrimivvva 3178 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
131130ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
1328ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
133 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
134132, 133, 87syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) = 𝑐)
135 ffn 6651 . . . . . . . . . . . . . . . . 17 (𝐹:𝐵𝑃𝐹 Fn 𝐵)
136132, 9, 1353syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹 Fn 𝐵)
137 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
138137simpld 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ∈ 𝒫 𝐵)
139138elpwid 4556 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
140139adantlr 715 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
141 simprl 770 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
142 fnfvima 7167 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑠𝐵𝑥𝑠) → (𝐹𝑥) ∈ (𝐹𝑠))
143136, 140, 141, 142syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑥) ∈ (𝐹𝑠))
144137simprd 495 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ∈ 𝒫 𝐵)
145144elpwid 4556 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
146145adantlr 715 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
147 simprr 772 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
148 fnfvima 7167 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑡𝐵𝑦𝑡) → (𝐹𝑦) ∈ (𝐹𝑡))
149136, 146, 147, 148syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑦) ∈ (𝐹𝑡))
150 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
151 oveq1 7353 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝐹𝑥) → (𝑒𝐼𝑓) = ((𝐹𝑥)𝐼𝑓))
152151eleq2d 2817 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐹𝑥) → (𝑐 ∈ (𝑒𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼𝑓)))
153 oveq2 7354 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐹𝑦) → ((𝐹𝑥)𝐼𝑓) = ((𝐹𝑥)𝐼(𝐹𝑦)))
154153eleq2d 2817 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑦) → (𝑐 ∈ ((𝐹𝑥)𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
155152, 154rspc2va 3584 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∈ (𝐹𝑠) ∧ (𝐹𝑦) ∈ (𝐹𝑡)) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
156143, 149, 150, 155syl21anc 837 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
157134, 156eqeltrd 2831 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
1588ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
159 simp-5l 784 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
160159, 21sylancom 588 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
161 simp-5l 784 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
162161, 23sylancom 588 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
163 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
164139, 163sseldd 3930 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝐵)
165 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
166145, 165sseldd 3930 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝐵)
16776ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝑃𝐵)
168 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
169167, 168ffvelcdmd 7018 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ 𝐵)
1703, 4, 5, 17, 18, 19, 158, 160, 162, 164, 166, 169f1otrgitv 28848 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
171170adantlr 715 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
172157, 171mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ (𝑥𝐽𝑦))
173172ralrimivva 3175 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
174173adantllr 719 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
17576ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝐹:𝑃𝐵)
176 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝑐𝑃)
177175, 176ffvelcdmd 7018 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (𝐹𝑐) ∈ 𝐵)
178 eleq1 2819 . . . . . . . . . . . . . 14 (𝑏 = (𝐹𝑐) → (𝑏 ∈ (𝑥𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
1791782ralbidv 3196 . . . . . . . . . . . . 13 (𝑏 = (𝐹𝑐) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
180179adantl 481 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ 𝑏 = (𝐹𝑐)) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
181177, 180rspcedv 3565 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
182181adantr 480 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
183174, 182mpd 15 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
1846ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐺 ∈ TarskiG)
185 imassrn 6019 . . . . . . . . . . 11 (𝐹𝑠) ⊆ ran 𝐹
186 f1ofo 6770 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵onto𝑃)
187 forn 6738 . . . . . . . . . . . . 13 (𝐹:𝐵onto𝑃 → ran 𝐹 = 𝑃)
1888, 186, 1873syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 = 𝑃)
189188ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ran 𝐹 = 𝑃)
190185, 189sseqtrid 3972 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑠) ⊆ 𝑃)
191 imassrn 6019 . . . . . . . . . . 11 (𝐹𝑡) ⊆ ran 𝐹
192191, 189sseqtrid 3972 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑡) ⊆ 𝑃)
19310ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐹:𝐵𝑃)
194 simplr 768 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝑎𝐵)
195193, 194ffvelcdmd 7018 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑎) ∈ 𝑃)
1968ad5antr 734 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1-onto𝑃)
197 ffn 6651 . . . . . . . . . . . . . . . . 17 (𝐹:𝑃𝐵𝐹 Fn 𝑃)
198196, 74, 75, 1974syl 19 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹 Fn 𝑃)
199190ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑠) ⊆ 𝑃)
200 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ (𝐹𝑠))
201 fnfvima 7167 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑠) ⊆ 𝑃𝑢 ∈ (𝐹𝑠)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
202198, 199, 200, 201syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
203196, 29syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1𝑃)
204 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
205204simpld 494 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠 ∈ 𝒫 𝐵)
206205elpwid 4556 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠𝐵)
207 f1imacnv 6779 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑠𝐵) → (𝐹 “ (𝐹𝑠)) = 𝑠)
208203, 206, 207syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑠)) = 𝑠)
209202, 208eleqtrd 2833 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝑠)
210192ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑡) ⊆ 𝑃)
211 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣 ∈ (𝐹𝑡))
212 fnfvima 7167 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑡) ⊆ 𝑃𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
213198, 210, 211, 212syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
214204simprd 495 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡 ∈ 𝒫 𝐵)
215214elpwid 4556 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡𝐵)
216 f1imacnv 6779 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑡𝐵) → (𝐹 “ (𝐹𝑡)) = 𝑡)
217203, 215, 216syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) = 𝑡)
218213, 217eleqtrd 2833 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝑡)
219 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦))
220 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑢) → (𝑥 ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽𝑦)))
221 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐹𝑣) → (𝑎𝐽𝑦) = (𝑎𝐽(𝐹𝑣)))
222221eleq2d 2817 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑣) → ((𝐹𝑢) ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣))))
223220, 222rspc2va 3584 . . . . . . . . . . . . . 14 ((((𝐹𝑢) ∈ 𝑠 ∧ (𝐹𝑣) ∈ 𝑡) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
224209, 218, 219, 223syl21anc 837 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
225 simp-6l 786 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
226225, 21sylancom 588 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
227 simp-6l 786 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
228227, 23sylancom 588 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
229 simp-4r 783 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑎𝐵)
230210, 211sseldd 3930 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣𝑃)
231 f1ocnvdm 7219 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹𝑣) ∈ 𝐵)
232196, 230, 231syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝐵)
233199, 200sseldd 3930 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢𝑃)
234 f1ocnvdm 7219 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹𝑢) ∈ 𝐵)
235196, 233, 234syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝐵)
2363, 4, 5, 17, 18, 19, 196, 226, 228, 229, 232, 235f1otrgitv 28848 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)) ↔ (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣)))))
237224, 236mpbid 232 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))))
238 f1ocnvfv2 7211 . . . . . . . . . . . . 13 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹‘(𝐹𝑢)) = 𝑢)
239196, 233, 238syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) = 𝑢)
240 f1ocnvfv2 7211 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹‘(𝐹𝑣)) = 𝑣)
241196, 230, 240syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑣)) = 𝑣)
242241oveq2d 7362 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))) = ((𝐹𝑎)𝐼𝑣))
243237, 239, 2423eltr3d 2845 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2442433impa 1109 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2453, 4, 5, 184, 190, 192, 195, 244axtgcont 28447 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑐𝑃𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
246183, 245r19.29a 3140 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
247246rexlimdva2 3135 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
248247ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
24973, 131, 2483jca 1128 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))))
25017, 18, 19istrkgb 28433 . . . . 5 (𝐻 ∈ TarskiGB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))))
2512, 249, 250sylanbrc 583 . . . 4 (𝜑𝐻 ∈ TarskiGB)
25256, 251elind 4147 . . 3 (𝜑𝐻 ∈ (TarskiGC ∩ TarskiGB))
2536ad9antr 742 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐺 ∈ TarskiG)
25410ad9antr 742 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵𝑃)
255 simp-9r 793 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝐵)
256254, 255ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ∈ 𝑃)
257 simp-8r 791 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦𝐵)
258254, 257ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ 𝑃)
259 simp-7r 789 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑧𝐵)
260254, 259ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑧) ∈ 𝑃)
261 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑎𝐵)
262254, 261ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑎) ∈ 𝑃)
263 simp-4r 783 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏𝐵)
264254, 263ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ 𝑃)
265 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑐𝐵)
266254, 265ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑐) ∈ 𝑃)
267 simp-6r 787 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑢𝐵)
268254, 267ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑢) ∈ 𝑃)
269 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑣𝐵)
270254, 269ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑣) ∈ 𝑃)
2718ad9antr 742 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵1-1-onto𝑃)
272271, 255jca 511 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹:𝐵1-1-onto𝑃𝑥𝐵))
273 simprl1 1219 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝑦)
274 dff1o6 7209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐵1-1-onto𝑃 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝑃 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
275274simp3bi 1147 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝐵1-1-onto𝑃 → ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
276275r19.21bi 3224 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝐵1-1-onto𝑃𝑥𝐵) → ∀𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
277276r19.21bi 3224 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
278277necon3d 2949 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
279278imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑦) → (𝐹𝑥) ≠ (𝐹𝑦))
280272, 257, 273, 279syl21anc 837 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ≠ (𝐹𝑦))
281 simprl2 1220 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦 ∈ (𝑥𝐽𝑧))
28221ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
283282ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
284283imp 406 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
28523ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
286285ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
287286imp 406 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2883, 4, 5, 17, 18, 19, 271, 284, 287, 255, 259, 257f1otrgitv 28848 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
289281, 288mpbid 232 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
290 simprl3 1221 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏 ∈ (𝑎𝐽𝑐))
2913, 4, 5, 17, 18, 19, 271, 284, 287, 261, 265, 263f1otrgitv 28848 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏 ∈ (𝑎𝐽𝑐) ↔ (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐))))
292290, 291mpbid 232 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐)))
293 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))
294293simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)))
295294simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = (𝑎𝐸𝑏))
2963, 4, 5, 17, 18, 19, 271, 284, 287, 255, 257f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
2973, 4, 5, 17, 18, 19, 271, 284, 287, 261, 263f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
298295, 296, 2973eqtr3d 2774 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
299294simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = (𝑏𝐸𝑐))
3003, 4, 5, 17, 18, 19, 271, 284, 287, 257, 259f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = ((𝐹𝑦)𝐷(𝐹𝑧)))
3013, 4, 5, 17, 18, 19, 271, 284, 287, 263, 265f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑐) = ((𝐹𝑏)𝐷(𝐹𝑐)))
302299, 300, 3013eqtr3d 2774 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑧)) = ((𝐹𝑏)𝐷(𝐹𝑐)))
303293simprd 495 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))
304303simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = (𝑎𝐸𝑣))
3053, 4, 5, 17, 18, 19, 271, 284, 287, 255, 267f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = ((𝐹𝑥)𝐷(𝐹𝑢)))
3063, 4, 5, 17, 18, 19, 271, 284, 287, 261, 269f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑣) = ((𝐹𝑎)𝐷(𝐹𝑣)))
307304, 305, 3063eqtr3d 2774 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑢)) = ((𝐹𝑎)𝐷(𝐹𝑣)))
308303simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = (𝑏𝐸𝑣))
3093, 4, 5, 17, 18, 19, 271, 284, 287, 257, 267f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = ((𝐹𝑦)𝐷(𝐹𝑢)))
3103, 4, 5, 17, 18, 19, 271, 284, 287, 263, 269f1otrgds 28847 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑣) = ((𝐹𝑏)𝐷(𝐹𝑣)))
311308, 309, 3103eqtr3d 2774 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑢)) = ((𝐹𝑏)𝐷(𝐹𝑣)))
3123, 4, 5, 253, 256, 258, 260, 262, 264, 266, 268, 270, 280, 289, 292, 298, 302, 307, 311axtg5seg 28443 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑧)𝐷(𝐹𝑢)) = ((𝐹𝑐)𝐷(𝐹𝑣)))
3133, 4, 5, 17, 18, 19, 271, 284, 287, 259, 267f1otrgds 28847 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = ((𝐹𝑧)𝐷(𝐹𝑢)))
3143, 4, 5, 17, 18, 19, 271, 284, 287, 265, 269f1otrgds 28847 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑐𝐸𝑣) = ((𝐹𝑐)𝐷(𝐹𝑣)))
315312, 313, 3143eqtr4d 2776 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣))
316315ex 412 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) → (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
317316ralrimiva 3124 . . . . . . . . . . . . 13 ((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ∀𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
318317ralrimiva 3124 . . . . . . . . . . . 12 (((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) → ∀𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
319318ralrimiva 3124 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
320319ralrimiva 3124 . . . . . . . . . 10 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
321320ralrimiva 3124 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ∀𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
322321ralrimiva 3124 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
323322ralrimiva 3124 . . . . . . 7 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
324323ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
325 simp-4l 782 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝜑)
326 simplr 768 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑤𝑃)
327 simprl 770 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤))
328325, 8syl 17 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝐹:𝐵1-1-onto𝑃)
329 f1ocnvfv2 7211 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑤𝑃) → (𝐹‘(𝐹𝑤)) = 𝑤)
330328, 326, 329syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹‘(𝐹𝑤)) = 𝑤)
331330oveq2d 7362 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))) = ((𝐹𝑥)𝐼𝑤))
332327, 331eleqtrrd 2834 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))))
333325, 21sylan 580 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
334325, 23sylan 580 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
33512ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑥𝐵)
33676ffvelcdmda 7017 . . . . . . . . . . . . 13 ((𝜑𝑤𝑃) → (𝐹𝑤) ∈ 𝐵)
337325, 326, 336syl2anc 584 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑤) ∈ 𝐵)
33814ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦𝐵)
3393, 4, 5, 17, 18, 19, 328, 333, 334, 335, 337, 338f1otrgitv 28848 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤)))))
340332, 339mpbird 257 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦 ∈ (𝑥𝐽(𝐹𝑤)))
3413, 4, 5, 17, 18, 19, 328, 333, 334, 338, 337f1otrgds 28847 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))))
342330oveq2d 7362 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))) = ((𝐹𝑦)𝐷𝑤))
343 simprr 772 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))
344341, 342, 3433eqtrd 2770 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
345 simprl 770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
346345ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑎𝐵)
347 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
348347ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑏𝐵)
3493, 4, 5, 17, 18, 19, 328, 333, 334, 346, 348f1otrgds 28847 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
350344, 349eqtr4d 2769 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))
351 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑥𝐽𝑧) = (𝑥𝐽(𝐹𝑤)))
352351eleq2d 2817 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ 𝑦 ∈ (𝑥𝐽(𝐹𝑤))))
353 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑦𝐸𝑧) = (𝑦𝐸(𝐹𝑤)))
354353eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → ((𝑦𝐸𝑧) = (𝑎𝐸𝑏) ↔ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)))
355352, 354anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑤) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
356355adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤𝑃) ∧ 𝑧 = (𝐹𝑤)) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
357336, 356rspcedv 3565 . . . . . . . . . . 11 ((𝜑𝑤𝑃) → ((𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏))))
358357imp 406 . . . . . . . . . 10 (((𝜑𝑤𝑃) ∧ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
359325, 326, 340, 350, 358syl22anc 838 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3607adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐺 ∈ TarskiG)
36113adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑥) ∈ 𝑃)
36215adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑦) ∈ 𝑃)
36311adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐹:𝐵𝑃)
364363, 345ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝑃)
365363, 347ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝑃)
3663, 4, 5, 360, 361, 362, 364, 365axtgsegcon 28442 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑤𝑃 ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏))))
367359, 366r19.29a 3140 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
368367ralrimivva 3175 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
369368ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3702, 324, 369jca32 515 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
37117, 18, 19istrkgcb 28434 . . . . 5 (𝐻 ∈ TarskiGCB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
372370, 371sylibr 234 . . . 4 (𝜑𝐻 ∈ TarskiGCB)
373 f1otrg.l . . . . 5 (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
37417, 18, 19istrkgl 28436 . . . . 5 (𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐻 ∈ V ∧ (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))})))
3752, 373, 374sylanbrc 583 . . . 4 (𝜑𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
376372, 375elind 4147 . . 3 (𝜑𝐻 ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
377252, 376elind 4147 . 2 (𝜑𝐻 ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
378 df-trkg 28431 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
379377, 378eleqtrrdi 2842 1 (𝜑𝐻 ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  [wsbc 3736  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4547  {csn 4573  ccnv 5613  ran crn 5615  cima 5617   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  TarskiGCcstrkgc 28406  TarskiGBcstrkgb 28407  TarskiGCBcstrkgcb 28408  Itvcitv 28411  LineGclng 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator