MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrg Structured version   Visualization version   GIF version

Theorem f1otrg 28879
Description: A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
f1otrkg.p 𝑃 = (Base‘𝐺)
f1otrkg.d 𝐷 = (dist‘𝐺)
f1otrkg.i 𝐼 = (Itv‘𝐺)
f1otrkg.b 𝐵 = (Base‘𝐻)
f1otrkg.e 𝐸 = (dist‘𝐻)
f1otrkg.j 𝐽 = (Itv‘𝐻)
f1otrkg.f (𝜑𝐹:𝐵1-1-onto𝑃)
f1otrkg.1 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
f1otrkg.2 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
f1otrg.h (𝜑𝐻𝑉)
f1otrg.g (𝜑𝐺 ∈ TarskiG)
f1otrg.l (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
Assertion
Ref Expression
f1otrg (𝜑𝐻 ∈ TarskiG)
Distinct variable groups:   𝑒,𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝐷,𝑒,𝑓,𝑔   𝑒,𝐸,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐹,𝑓,𝑔,𝑥,𝑦,𝑧   𝑒,𝐼,𝑓,𝑔,𝑥,𝑦   𝑒,𝐽,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑒,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑒,𝑔)   𝐼(𝑧)   𝑉(𝑥,𝑦,𝑧,𝑒,𝑓,𝑔)

Proof of Theorem f1otrg
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1otrg.h . . . . . 6 (𝜑𝐻𝑉)
21elexd 3504 . . . . 5 (𝜑𝐻 ∈ V)
3 f1otrkg.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
4 f1otrkg.d . . . . . . . . 9 𝐷 = (dist‘𝐺)
5 f1otrkg.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
6 f1otrg.g . . . . . . . . . 10 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ TarskiG)
8 f1otrkg.f . . . . . . . . . . . 12 (𝜑𝐹:𝐵1-1-onto𝑃)
9 f1of 6848 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵𝑃)
108, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝑃)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵𝑃)
12 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
1311, 12ffvelcdmd 7105 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ 𝑃)
14 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
1511, 14ffvelcdmd 7105 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ 𝑃)
163, 4, 5, 7, 13, 15axtgcgrrflx 28470 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑦)𝐷(𝐹𝑥)))
17 f1otrkg.b . . . . . . . . 9 𝐵 = (Base‘𝐻)
18 f1otrkg.e . . . . . . . . 9 𝐸 = (dist‘𝐻)
19 f1otrkg.j . . . . . . . . 9 𝐽 = (Itv‘𝐻)
208adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:𝐵1-1-onto𝑃)
21 f1otrkg.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
2221adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
23 f1otrkg.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2423adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
253, 4, 5, 17, 18, 19, 20, 22, 24, 12, 14f1otrgds 28877 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
263, 4, 5, 17, 18, 19, 20, 22, 24, 14, 12f1otrgds 28877 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦𝐸𝑥) = ((𝐹𝑦)𝐷(𝐹𝑥)))
2716, 25, 263eqtr4d 2787 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
2827ralrimivva 3202 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥))
29 f1of1 6847 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵1-1𝑃)
308, 29syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵1-1𝑃)
31303ad2ant1 1134 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1𝑃)
32 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥𝐵)
33 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑦𝐵)
3432, 33jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐵𝑦𝐵))
3563ad2ant1 1134 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐺 ∈ TarskiG)
36103ad2ant1 1134 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵𝑃)
3736, 32ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) ∈ 𝑃)
3836, 33ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑦) ∈ 𝑃)
39 simp23 1209 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑧𝐵)
4036, 39ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑧) ∈ 𝑃)
41 simp3 1139 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = (𝑧𝐸𝑧))
4283ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝐹:𝐵1-1-onto𝑃)
43213ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
44233ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
453, 4, 5, 17, 18, 19, 42, 43, 44, 32, 33f1otrgds 28877 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
463, 4, 5, 17, 18, 19, 42, 43, 44, 39, 39f1otrgds 28877 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝑧𝐸𝑧) = ((𝐹𝑧)𝐷(𝐹𝑧)))
4741, 45, 463eqtr3d 2785 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑧)𝐷(𝐹𝑧)))
483, 4, 5, 35, 37, 38, 40, 47axtgcgrid 28471 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → (𝐹𝑥) = (𝐹𝑦))
49 f1veqaeq 7277 . . . . . . . . . 10 ((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5049imp 406 . . . . . . . . 9 (((𝐹:𝐵1-1𝑃 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
5131, 34, 48, 50syl21anc 838 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑥𝐸𝑦) = (𝑧𝐸𝑧)) → 𝑥 = 𝑦)
52513expia 1122 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5352ralrimivvva 3205 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))
5428, 53jca 511 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦)))
5517, 18, 19istrkgc 28462 . . . . 5 (𝐻 ∈ TarskiGC ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐸𝑦) = (𝑦𝐸𝑥) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝐸𝑦) = (𝑧𝐸𝑧) → 𝑥 = 𝑦))))
562, 54, 55sylanbrc 583 . . . 4 (𝜑𝐻 ∈ TarskiGC)
5783ad2ant1 1134 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1-onto𝑃)
5857, 29syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐹:𝐵1-1𝑃)
59 simp2 1138 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑥𝐵𝑦𝐵))
6063ad2ant1 1134 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝐺 ∈ TarskiG)
61133adant3 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) ∈ 𝑃)
62153adant3 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ 𝑃)
63 simp3 1139 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦 ∈ (𝑥𝐽𝑥))
64213ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
65233ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
66123adant3 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥𝐵)
67143adant3 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑦𝐵)
683, 4, 5, 17, 18, 19, 57, 64, 65, 66, 66, 67f1otrgitv 28878 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝑦 ∈ (𝑥𝐽𝑥) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥))))
6963, 68mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑥)))
703, 4, 5, 60, 61, 62, 69axtgbtwnid 28474 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → (𝐹𝑥) = (𝐹𝑦))
7158, 59, 70, 50syl21anc 838 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑦 ∈ (𝑥𝐽𝑥)) → 𝑥 = 𝑦)
72713expia 1122 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
7372ralrimivva 3202 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦))
74 f1ocnv 6860 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝑃𝐹:𝑃1-1-onto𝐵)
75 f1of 6848 . . . . . . . . . . . . . 14 (𝐹:𝑃1-1-onto𝐵𝐹:𝑃𝐵)
768, 74, 753syl 18 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃𝐵)
7776ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝑃𝐵)
78 simplr 769 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐𝑃)
7977, 78ffvelcdmd 7105 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ 𝐵)
80 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → 𝑎 = (𝐹𝑐))
8180eleq1d 2826 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑢𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑢𝐽𝑦)))
8280eleq1d 2826 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → (𝑎 ∈ (𝑣𝐽𝑥) ↔ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
8381, 82anbi12d 632 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ 𝑎 = (𝐹𝑐)) → ((𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)) ↔ ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥))))
84 simprl 771 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
8520ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵1-1-onto𝑃)
8685ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝐹:𝐵1-1-onto𝑃)
87 f1ocnvfv2 7297 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → (𝐹‘(𝐹𝑐)) = 𝑐)
8887eleq1d 2826 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
8986, 78, 88syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ↔ 𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
9084, 89mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦)))
9122ad4ant14 752 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9291ad4ant14 752 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
9324ad4ant14 752 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
9493ad4ant14 752 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
95 simplr2 1217 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢𝐵)
9695ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑢𝐵)
9714ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑦𝐵)
9897ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑦𝐵)
993, 4, 5, 17, 18, 19, 86, 92, 94, 96, 98, 79f1otrgitv 28878 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑢)𝐼(𝐹𝑦))))
10090, 99mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑢𝐽𝑦))
101 simprr 773 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
10287eleq1d 2826 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑐𝑃) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
10386, 78, 102syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)) ↔ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
104101, 103mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))
105 simplr3 1218 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣𝐵)
106105ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑣𝐵)
10712ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑥𝐵)
108107ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → 𝑥𝐵)
1093, 4, 5, 17, 18, 19, 86, 92, 94, 106, 108, 79f1otrgitv 28878 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑣𝐽𝑥) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
110104, 109mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → (𝐹𝑐) ∈ (𝑣𝐽𝑥))
111100, 110jca 511 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ((𝐹𝑐) ∈ (𝑢𝐽𝑦) ∧ (𝐹𝑐) ∈ (𝑣𝐽𝑥)))
11279, 83, 111rspcedvd 3624 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) ∧ 𝑐𝑃) ∧ (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥)))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
1137ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐺 ∈ TarskiG)
11411ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝐹:𝐵𝑃)
115114, 107ffvelcdmd 7105 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑥) ∈ 𝑃)
116114, 97ffvelcdmd 7105 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑦) ∈ 𝑃)
117 simplr1 1216 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑧𝐵)
118114, 117ffvelcdmd 7105 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑧) ∈ 𝑃)
119114, 95ffvelcdmd 7105 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ 𝑃)
120114, 105ffvelcdmd 7105 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ 𝑃)
121 simprl 771 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑢 ∈ (𝑥𝐽𝑧))
1223, 4, 5, 17, 18, 19, 85, 91, 93, 107, 117, 95f1otrgitv 28878 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑢 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
123121, 122mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑢) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
124 simprr 773 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → 𝑣 ∈ (𝑦𝐽𝑧))
1253, 4, 5, 17, 18, 19, 85, 91, 93, 97, 117, 105f1otrgitv 28878 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝑣 ∈ (𝑦𝐽𝑧) ↔ (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧))))
126124, 125mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → (𝐹𝑣) ∈ ((𝐹𝑦)𝐼(𝐹𝑧)))
1273, 4, 5, 113, 115, 116, 118, 119, 120, 123, 126axtgpasch 28475 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑐𝑃 (𝑐 ∈ ((𝐹𝑢)𝐼(𝐹𝑦)) ∧ 𝑐 ∈ ((𝐹𝑣)𝐼(𝐹𝑥))))
128112, 127r19.29a 3162 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) ∧ (𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧))) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥)))
129128ex 412 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑧𝐵𝑢𝐵𝑣𝐵)) → ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
130129ralrimivvva 3205 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
131130ralrimivva 3202 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))))
1328ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
133 simpllr 776 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
134132, 133, 87syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) = 𝑐)
135 ffn 6736 . . . . . . . . . . . . . . . . 17 (𝐹:𝐵𝑃𝐹 Fn 𝐵)
136132, 9, 1353syl 18 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹 Fn 𝐵)
137 simp-4r 784 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
138137simpld 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ∈ 𝒫 𝐵)
139138elpwid 4609 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
140139adantlr 715 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠𝐵)
141 simprl 771 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
142 fnfvima 7253 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑠𝐵𝑥𝑠) → (𝐹𝑥) ∈ (𝐹𝑠))
143136, 140, 141, 142syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑥) ∈ (𝐹𝑠))
144137simprd 495 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ∈ 𝒫 𝐵)
145144elpwid 4609 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
146145adantlr 715 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡𝐵)
147 simprr 773 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
148 fnfvima 7253 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐵𝑡𝐵𝑦𝑡) → (𝐹𝑦) ∈ (𝐹𝑡))
149136, 146, 147, 148syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑦) ∈ (𝐹𝑡))
150 simplr 769 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
151 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝐹𝑥) → (𝑒𝐼𝑓) = ((𝐹𝑥)𝐼𝑓))
152151eleq2d 2827 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐹𝑥) → (𝑐 ∈ (𝑒𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼𝑓)))
153 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐹𝑦) → ((𝐹𝑥)𝐼𝑓) = ((𝐹𝑥)𝐼(𝐹𝑦)))
154153eleq2d 2827 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐹𝑦) → (𝑐 ∈ ((𝐹𝑥)𝐼𝑓) ↔ 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
155152, 154rspc2va 3634 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∈ (𝐹𝑠) ∧ (𝐹𝑦) ∈ (𝐹𝑡)) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
156143, 149, 150, 155syl21anc 838 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐 ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
157134, 156eqeltrd 2841 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦)))
1588ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝐵1-1-onto𝑃)
159 simp-5l 785 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
160159, 21sylancom 588 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
161 simp-5l 785 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
162161, 23sylancom 588 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
163 simprl 771 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
164139, 163sseldd 3984 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝐵)
165 simprr 773 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
166145, 165sseldd 3984 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝐵)
16776ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝐹:𝑃𝐵)
168 simplr 769 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → 𝑐𝑃)
169167, 168ffvelcdmd 7105 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ 𝐵)
1703, 4, 5, 17, 18, 19, 158, 160, 162, 164, 166, 169f1otrgitv 28878 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
171170adantlr 715 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → ((𝐹𝑐) ∈ (𝑥𝐽𝑦) ↔ (𝐹‘(𝐹𝑐)) ∈ ((𝐹𝑥)𝐼(𝐹𝑦))))
172157, 171mpbird 257 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) ∧ (𝑥𝑠𝑦𝑡)) → (𝐹𝑐) ∈ (𝑥𝐽𝑦))
173172ralrimivva 3202 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
174173adantllr 719 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦))
17576ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝐹:𝑃𝐵)
176 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → 𝑐𝑃)
177175, 176ffvelcdmd 7105 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (𝐹𝑐) ∈ 𝐵)
178 eleq1 2829 . . . . . . . . . . . . . 14 (𝑏 = (𝐹𝑐) → (𝑏 ∈ (𝑥𝐽𝑦) ↔ (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
1791782ralbidv 3221 . . . . . . . . . . . . 13 (𝑏 = (𝐹𝑐) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
180179adantl 481 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ 𝑏 = (𝐹𝑐)) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦) ↔ ∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦)))
181177, 180rspcedv 3615 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
182181adantr 480 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → (∀𝑥𝑠𝑦𝑡 (𝐹𝑐) ∈ (𝑥𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
183174, 182mpd 15 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑐𝑃) ∧ ∀𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
1846ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐺 ∈ TarskiG)
185 imassrn 6089 . . . . . . . . . . 11 (𝐹𝑠) ⊆ ran 𝐹
186 f1ofo 6855 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵onto𝑃)
187 forn 6823 . . . . . . . . . . . . 13 (𝐹:𝐵onto𝑃 → ran 𝐹 = 𝑃)
1888, 186, 1873syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 = 𝑃)
189188ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ran 𝐹 = 𝑃)
190185, 189sseqtrid 4026 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑠) ⊆ 𝑃)
191 imassrn 6089 . . . . . . . . . . 11 (𝐹𝑡) ⊆ ran 𝐹
192191, 189sseqtrid 4026 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑡) ⊆ 𝑃)
19310ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝐹:𝐵𝑃)
194 simplr 769 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → 𝑎𝐵)
195193, 194ffvelcdmd 7105 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑎) ∈ 𝑃)
1968ad5antr 734 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1-onto𝑃)
197 ffn 6736 . . . . . . . . . . . . . . . . 17 (𝐹:𝑃𝐵𝐹 Fn 𝑃)
198196, 74, 75, 1974syl 19 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹 Fn 𝑃)
199190ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑠) ⊆ 𝑃)
200 simplr 769 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ (𝐹𝑠))
201 fnfvima 7253 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑠) ⊆ 𝑃𝑢 ∈ (𝐹𝑠)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
202198, 199, 200, 201syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝐹 “ (𝐹𝑠)))
203196, 29syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝐹:𝐵1-1𝑃)
204 simp-5r 786 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵))
205204simpld 494 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠 ∈ 𝒫 𝐵)
206205elpwid 4609 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑠𝐵)
207 f1imacnv 6864 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑠𝐵) → (𝐹 “ (𝐹𝑠)) = 𝑠)
208203, 206, 207syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑠)) = 𝑠)
209202, 208eleqtrd 2843 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝑠)
210192ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑡) ⊆ 𝑃)
211 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣 ∈ (𝐹𝑡))
212 fnfvima 7253 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑃 ∧ (𝐹𝑡) ⊆ 𝑃𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
213198, 210, 211, 212syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ (𝐹 “ (𝐹𝑡)))
214204simprd 495 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡 ∈ 𝒫 𝐵)
215214elpwid 4609 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑡𝐵)
216 f1imacnv 6864 . . . . . . . . . . . . . . . 16 ((𝐹:𝐵1-1𝑃𝑡𝐵) → (𝐹 “ (𝐹𝑡)) = 𝑡)
217203, 215, 216syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) = 𝑡)
218213, 217eleqtrd 2843 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝑡)
219 simpllr 776 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦))
220 eleq1 2829 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑢) → (𝑥 ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽𝑦)))
221 oveq2 7439 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐹𝑣) → (𝑎𝐽𝑦) = (𝑎𝐽(𝐹𝑣)))
222221eleq2d 2827 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑣) → ((𝐹𝑢) ∈ (𝑎𝐽𝑦) ↔ (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣))))
223220, 222rspc2va 3634 . . . . . . . . . . . . . 14 ((((𝐹𝑢) ∈ 𝑠 ∧ (𝐹𝑣) ∈ 𝑡) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
224209, 218, 219, 223syl21anc 838 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)))
225 simp-6l 787 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → 𝜑)
226225, 21sylancom 588 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
227 simp-6l 787 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → 𝜑)
228227, 23sylancom 588 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
229 simp-4r 784 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑎𝐵)
230210, 211sseldd 3984 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑣𝑃)
231 f1ocnvdm 7305 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹𝑣) ∈ 𝐵)
232196, 230, 231syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑣) ∈ 𝐵)
233199, 200sseldd 3984 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢𝑃)
234 f1ocnvdm 7305 . . . . . . . . . . . . . . 15 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹𝑢) ∈ 𝐵)
235196, 233, 234syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹𝑢) ∈ 𝐵)
2363, 4, 5, 17, 18, 19, 196, 226, 228, 229, 232, 235f1otrgitv 28878 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑢) ∈ (𝑎𝐽(𝐹𝑣)) ↔ (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣)))))
237224, 236mpbid 232 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) ∈ ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))))
238 f1ocnvfv2 7297 . . . . . . . . . . . . 13 ((𝐹:𝐵1-1-onto𝑃𝑢𝑃) → (𝐹‘(𝐹𝑢)) = 𝑢)
239196, 233, 238syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑢)) = 𝑢)
240 f1ocnvfv2 7297 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑣𝑃) → (𝐹‘(𝐹𝑣)) = 𝑣)
241196, 230, 240syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → (𝐹‘(𝐹𝑣)) = 𝑣)
242241oveq2d 7447 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → ((𝐹𝑎)𝐼(𝐹‘(𝐹𝑣))) = ((𝐹𝑎)𝐼𝑣))
243237, 239, 2423eltr3d 2855 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠)) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2442433impa 1110 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) ∧ 𝑢 ∈ (𝐹𝑠) ∧ 𝑣 ∈ (𝐹𝑡)) → 𝑢 ∈ ((𝐹𝑎)𝐼𝑣))
2453, 4, 5, 184, 190, 192, 195, 244axtgcont 28477 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑐𝑃𝑒 ∈ (𝐹𝑠)∀𝑓 ∈ (𝐹𝑡)𝑐 ∈ (𝑒𝐼𝑓))
246183, 245r19.29a 3162 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) ∧ 𝑎𝐵) ∧ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦)) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))
247246rexlimdva2 3157 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
248247ralrimivva 3202 . . . . . 6 (𝜑 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))
24973, 131, 2483jca 1129 . . . . 5 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦))))
25017, 18, 19istrkgb 28463 . . . . 5 (𝐻 ∈ TarskiGB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵 (𝑦 ∈ (𝑥𝐽𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑣𝐵 ((𝑢 ∈ (𝑥𝐽𝑧) ∧ 𝑣 ∈ (𝑦𝐽𝑧)) → ∃𝑎𝐵 (𝑎 ∈ (𝑢𝐽𝑦) ∧ 𝑎 ∈ (𝑣𝐽𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(∃𝑎𝐵𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐽𝑦) → ∃𝑏𝐵𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐽𝑦)))))
2512, 249, 250sylanbrc 583 . . . 4 (𝜑𝐻 ∈ TarskiGB)
25256, 251elind 4200 . . 3 (𝜑𝐻 ∈ (TarskiGC ∩ TarskiGB))
2536ad9antr 742 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐺 ∈ TarskiG)
25410ad9antr 742 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵𝑃)
255 simp-9r 794 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝐵)
256254, 255ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ∈ 𝑃)
257 simp-8r 792 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦𝐵)
258254, 257ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ 𝑃)
259 simp-7r 790 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑧𝐵)
260254, 259ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑧) ∈ 𝑃)
261 simp-5r 786 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑎𝐵)
262254, 261ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑎) ∈ 𝑃)
263 simp-4r 784 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏𝐵)
264254, 263ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ 𝑃)
265 simpllr 776 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑐𝐵)
266254, 265ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑐) ∈ 𝑃)
267 simp-6r 788 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑢𝐵)
268254, 267ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑢) ∈ 𝑃)
269 simplr 769 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑣𝐵)
270254, 269ffvelcdmd 7105 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑣) ∈ 𝑃)
2718ad9antr 742 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝐹:𝐵1-1-onto𝑃)
272271, 255jca 511 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹:𝐵1-1-onto𝑃𝑥𝐵))
273 simprl1 1219 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑥𝑦)
274 dff1o6 7295 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐵1-1-onto𝑃 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝑃 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
275274simp3bi 1148 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝐵1-1-onto𝑃 → ∀𝑥𝐵𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
276275r19.21bi 3251 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝐵1-1-onto𝑃𝑥𝐵) → ∀𝑦𝐵 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
277276r19.21bi 3251 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
278277necon3d 2961 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
279278imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝐵1-1-onto𝑃𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑦) → (𝐹𝑥) ≠ (𝐹𝑦))
280272, 257, 273, 279syl21anc 838 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑥) ≠ (𝐹𝑦))
281 simprl2 1220 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑦 ∈ (𝑥𝐽𝑧))
28221ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
283282ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓))))
284283imp 406 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
28523ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
286285ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑒𝐵𝑓𝐵𝑔𝐵) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓)))))
287286imp 406 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
2883, 4, 5, 17, 18, 19, 271, 284, 287, 255, 259, 257f1otrgitv 28878 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧))))
289281, 288mpbid 232 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹𝑧)))
290 simprl3 1221 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → 𝑏 ∈ (𝑎𝐽𝑐))
2913, 4, 5, 17, 18, 19, 271, 284, 287, 261, 265, 263f1otrgitv 28878 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏 ∈ (𝑎𝐽𝑐) ↔ (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐))))
292290, 291mpbid 232 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝐹𝑏) ∈ ((𝐹𝑎)𝐼(𝐹𝑐)))
293 simprr 773 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))
294293simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)))
295294simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = (𝑎𝐸𝑏))
2963, 4, 5, 17, 18, 19, 271, 284, 287, 255, 257f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑦) = ((𝐹𝑥)𝐷(𝐹𝑦)))
2973, 4, 5, 17, 18, 19, 271, 284, 287, 261, 263f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
298295, 296, 2973eqtr3d 2785 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
299294simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = (𝑏𝐸𝑐))
3003, 4, 5, 17, 18, 19, 271, 284, 287, 257, 259f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑧) = ((𝐹𝑦)𝐷(𝐹𝑧)))
3013, 4, 5, 17, 18, 19, 271, 284, 287, 263, 265f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑐) = ((𝐹𝑏)𝐷(𝐹𝑐)))
302299, 300, 3013eqtr3d 2785 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑧)) = ((𝐹𝑏)𝐷(𝐹𝑐)))
303293simprd 495 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))
304303simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = (𝑎𝐸𝑣))
3053, 4, 5, 17, 18, 19, 271, 284, 287, 255, 267f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑥𝐸𝑢) = ((𝐹𝑥)𝐷(𝐹𝑢)))
3063, 4, 5, 17, 18, 19, 271, 284, 287, 261, 269f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑎𝐸𝑣) = ((𝐹𝑎)𝐷(𝐹𝑣)))
307304, 305, 3063eqtr3d 2785 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑥)𝐷(𝐹𝑢)) = ((𝐹𝑎)𝐷(𝐹𝑣)))
308303simprd 495 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = (𝑏𝐸𝑣))
3093, 4, 5, 17, 18, 19, 271, 284, 287, 257, 267f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑦𝐸𝑢) = ((𝐹𝑦)𝐷(𝐹𝑢)))
3103, 4, 5, 17, 18, 19, 271, 284, 287, 263, 269f1otrgds 28877 . . . . . . . . . . . . . . . . . 18 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑏𝐸𝑣) = ((𝐹𝑏)𝐷(𝐹𝑣)))
311308, 309, 3103eqtr3d 2785 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑦)𝐷(𝐹𝑢)) = ((𝐹𝑏)𝐷(𝐹𝑣)))
3123, 4, 5, 253, 256, 258, 260, 262, 264, 266, 268, 270, 280, 289, 292, 298, 302, 307, 311axtg5seg 28473 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → ((𝐹𝑧)𝐷(𝐹𝑢)) = ((𝐹𝑐)𝐷(𝐹𝑣)))
3133, 4, 5, 17, 18, 19, 271, 284, 287, 259, 267f1otrgds 28877 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = ((𝐹𝑧)𝐷(𝐹𝑢)))
3143, 4, 5, 17, 18, 19, 271, 284, 287, 265, 269f1otrgds 28877 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑐𝐸𝑣) = ((𝐹𝑐)𝐷(𝐹𝑣)))
315312, 313, 3143eqtr4d 2787 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) ∧ ((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣))))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣))
316315ex 412 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) ∧ 𝑣𝐵) → (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
317316ralrimiva 3146 . . . . . . . . . . . . 13 ((((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ∀𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
318317ralrimiva 3146 . . . . . . . . . . . 12 (((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) ∧ 𝑏𝐵) → ∀𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
319318ralrimiva 3146 . . . . . . . . . . 11 ((((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∀𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
320319ralrimiva 3146 . . . . . . . . . 10 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) ∧ 𝑢𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
321320ralrimiva 3146 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ∀𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
322321ralrimiva 3146 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
323322ralrimiva 3146 . . . . . . 7 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
324323ralrimiva 3146 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)))
325 simp-4l 783 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝜑)
326 simplr 769 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑤𝑃)
327 simprl 771 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤))
328325, 8syl 17 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝐹:𝐵1-1-onto𝑃)
329 f1ocnvfv2 7297 . . . . . . . . . . . . . 14 ((𝐹:𝐵1-1-onto𝑃𝑤𝑃) → (𝐹‘(𝐹𝑤)) = 𝑤)
330328, 326, 329syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹‘(𝐹𝑤)) = 𝑤)
331330oveq2d 7447 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))) = ((𝐹𝑥)𝐼𝑤))
332327, 331eleqtrrd 2844 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤))))
333325, 21sylan 580 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))
334325, 23sylan 580 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))
33512ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑥𝐵)
33676ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑤𝑃) → (𝐹𝑤) ∈ 𝐵)
337325, 326, 336syl2anc 584 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝐹𝑤) ∈ 𝐵)
33814ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦𝐵)
3393, 4, 5, 17, 18, 19, 328, 333, 334, 335, 337, 338f1otrgitv 28878 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ↔ (𝐹𝑦) ∈ ((𝐹𝑥)𝐼(𝐹‘(𝐹𝑤)))))
340332, 339mpbird 257 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑦 ∈ (𝑥𝐽(𝐹𝑤)))
3413, 4, 5, 17, 18, 19, 328, 333, 334, 338, 337f1otrgds 28877 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))))
342330oveq2d 7447 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷(𝐹‘(𝐹𝑤))) = ((𝐹𝑦)𝐷𝑤))
343 simprr 773 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))
344341, 342, 3433eqtrd 2781 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = ((𝐹𝑎)𝐷(𝐹𝑏)))
345 simprl 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
346345ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑎𝐵)
347 simprr 773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
348347ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → 𝑏𝐵)
3493, 4, 5, 17, 18, 19, 328, 333, 334, 346, 348f1otrgds 28877 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑎𝐸𝑏) = ((𝐹𝑎)𝐷(𝐹𝑏)))
350344, 349eqtr4d 2780 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))
351 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑥𝐽𝑧) = (𝑥𝐽(𝐹𝑤)))
352351eleq2d 2827 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → (𝑦 ∈ (𝑥𝐽𝑧) ↔ 𝑦 ∈ (𝑥𝐽(𝐹𝑤))))
353 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝑦𝐸𝑧) = (𝑦𝐸(𝐹𝑤)))
354353eqeq1d 2739 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → ((𝑦𝐸𝑧) = (𝑎𝐸𝑏) ↔ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)))
355352, 354anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑤) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
356355adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤𝑃) ∧ 𝑧 = (𝐹𝑤)) → ((𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)) ↔ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))))
357336, 356rspcedv 3615 . . . . . . . . . . 11 ((𝜑𝑤𝑃) → ((𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏))))
358357imp 406 . . . . . . . . . 10 (((𝜑𝑤𝑃) ∧ (𝑦 ∈ (𝑥𝐽(𝐹𝑤)) ∧ (𝑦𝐸(𝐹𝑤)) = (𝑎𝐸𝑏))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
359325, 326, 340, 350, 358syl22anc 839 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑤𝑃) ∧ ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏)))) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3607adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐺 ∈ TarskiG)
36113adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑥) ∈ 𝑃)
36215adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑦) ∈ 𝑃)
36311adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → 𝐹:𝐵𝑃)
364363, 345ffvelcdmd 7105 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝑃)
365363, 347ffvelcdmd 7105 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝑃)
3663, 4, 5, 360, 361, 362, 364, 365axtgsegcon 28472 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑤𝑃 ((𝐹𝑦) ∈ ((𝐹𝑥)𝐼𝑤) ∧ ((𝐹𝑦)𝐷𝑤) = ((𝐹𝑎)𝐷(𝐹𝑏))))
367359, 366r19.29a 3162 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
368367ralrimivva 3202 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
369368ralrimivva 3202 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))
3702, 324, 369jca32 515 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
37117, 18, 19istrkgcb 28464 . . . . 5 (𝐻 ∈ TarskiGCB ↔ (𝐻 ∈ V ∧ (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑢𝐵𝑎𝐵𝑏𝐵𝑐𝐵𝑣𝐵 (((𝑥𝑦𝑦 ∈ (𝑥𝐽𝑧) ∧ 𝑏 ∈ (𝑎𝐽𝑐)) ∧ (((𝑥𝐸𝑦) = (𝑎𝐸𝑏) ∧ (𝑦𝐸𝑧) = (𝑏𝐸𝑐)) ∧ ((𝑥𝐸𝑢) = (𝑎𝐸𝑣) ∧ (𝑦𝐸𝑢) = (𝑏𝐸𝑣)))) → (𝑧𝐸𝑢) = (𝑐𝐸𝑣)) ∧ ∀𝑥𝐵𝑦𝐵𝑎𝐵𝑏𝐵𝑧𝐵 (𝑦 ∈ (𝑥𝐽𝑧) ∧ (𝑦𝐸𝑧) = (𝑎𝐸𝑏)))))
372370, 371sylibr 234 . . . 4 (𝜑𝐻 ∈ TarskiGCB)
373 f1otrg.l . . . . 5 (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))
37417, 18, 19istrkgl 28466 . . . . 5 (𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐻 ∈ V ∧ (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))})))
3752, 373, 374sylanbrc 583 . . . 4 (𝜑𝐻 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
376372, 375elind 4200 . . 3 (𝜑𝐻 ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
377252, 376elind 4200 . 2 (𝜑𝐻 ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
378 df-trkg 28461 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
379377, 378eleqtrrdi 2852 1 (𝜑𝐻 ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  [wsbc 3788  cdif 3948  cin 3950  wss 3951  𝒫 cpw 4600  {csn 4626  ccnv 5684  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  TarskiGCcstrkgc 28436  TarskiGBcstrkgb 28437  TarskiGCBcstrkgcb 28438  Itvcitv 28441  LineGclng 28442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator