MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgsegcon Structured version   Visualization version   GIF version

Theorem axtgsegcon 27695
Description: Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment 𝐴𝐡, one can construct a line segment congruent to it, starting at any point π‘Œ and going in the direction of any ray containing π‘Œ. The ray is determined by the point π‘Œ and a second point 𝑋, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point 𝑧 whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Baseβ€˜πΊ)
axtrkg.d βˆ’ = (distβ€˜πΊ)
axtrkg.i 𝐼 = (Itvβ€˜πΊ)
axtrkg.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
axtgsegcon.1 (πœ‘ β†’ 𝑋 ∈ 𝑃)
axtgsegcon.2 (πœ‘ β†’ π‘Œ ∈ 𝑃)
axtgsegcon.3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
axtgsegcon.4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
Assertion
Ref Expression
axtgsegcon (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐡   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,π‘Œ   𝑧, βˆ’
Allowed substitution hints:   πœ‘(𝑧)   𝐺(𝑧)

Proof of Theorem axtgsegcon
Dummy variables 𝑓 𝑖 𝑝 π‘₯ 𝑦 π‘Ž 𝑏 𝑐 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 27684 . . . . . 6 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}))
2 inss2 4228 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})
3 inss1 4227 . . . . . . 7 (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}) βŠ† TarskiGCB
42, 3sstri 3990 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† TarskiGCB
51, 4eqsstri 4015 . . . . 5 TarskiG βŠ† TarskiGCB
6 axtrkg.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
75, 6sselid 3979 . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . 7 𝑃 = (Baseβ€˜πΊ)
9 axtrkg.d . . . . . . 7 βˆ’ = (distβ€˜πΊ)
10 axtrkg.i . . . . . . 7 𝐼 = (Itvβ€˜πΊ)
118, 9, 10istrkgcb 27687 . . . . . 6 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 (((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯𝐼𝑧) ∧ 𝑏 ∈ (π‘ŽπΌπ‘)) ∧ (((π‘₯ βˆ’ 𝑦) = (π‘Ž βˆ’ 𝑏) ∧ (𝑦 βˆ’ 𝑧) = (𝑏 βˆ’ 𝑐)) ∧ ((π‘₯ βˆ’ 𝑒) = (π‘Ž βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑏 βˆ’ 𝑣)))) β†’ (𝑧 βˆ’ 𝑒) = (𝑐 βˆ’ 𝑣)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)))))
1211simprbi 498 . . . . 5 (𝐺 ∈ TarskiGCB β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 (((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯𝐼𝑧) ∧ 𝑏 ∈ (π‘ŽπΌπ‘)) ∧ (((π‘₯ βˆ’ 𝑦) = (π‘Ž βˆ’ 𝑏) ∧ (𝑦 βˆ’ 𝑧) = (𝑏 βˆ’ 𝑐)) ∧ ((π‘₯ βˆ’ 𝑒) = (π‘Ž βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑏 βˆ’ 𝑣)))) β†’ (𝑧 βˆ’ 𝑒) = (𝑐 βˆ’ 𝑣)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
1312simprd 497 . . . 4 (𝐺 ∈ TarskiGCB β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)))
147, 13syl 17 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)))
15 axtgsegcon.1 . . . 4 (πœ‘ β†’ 𝑋 ∈ 𝑃)
16 axtgsegcon.2 . . . 4 (πœ‘ β†’ π‘Œ ∈ 𝑃)
17 oveq1 7411 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (π‘₯𝐼𝑧) = (𝑋𝐼𝑧))
1817eleq2d 2820 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (𝑦 ∈ (π‘₯𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
1918anbi1d 631 . . . . . . 7 (π‘₯ = 𝑋 β†’ ((𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
2019rexbidv 3179 . . . . . 6 (π‘₯ = 𝑋 β†’ (βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
21202ralbidv 3219 . . . . 5 (π‘₯ = 𝑋 β†’ (βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
22 eleq1 2822 . . . . . . . 8 (𝑦 = π‘Œ β†’ (𝑦 ∈ (𝑋𝐼𝑧) ↔ π‘Œ ∈ (𝑋𝐼𝑧)))
23 oveq1 7411 . . . . . . . . 9 (𝑦 = π‘Œ β†’ (𝑦 βˆ’ 𝑧) = (π‘Œ βˆ’ 𝑧))
2423eqeq1d 2735 . . . . . . . 8 (𝑦 = π‘Œ β†’ ((𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏) ↔ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)))
2522, 24anbi12d 632 . . . . . . 7 (𝑦 = π‘Œ β†’ ((𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
2625rexbidv 3179 . . . . . 6 (𝑦 = π‘Œ β†’ (βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
27262ralbidv 3219 . . . . 5 (𝑦 = π‘Œ β†’ (βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
2821, 27rspc2v 3621 . . . 4 ((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃) β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) β†’ βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
2915, 16, 28syl2anc 585 . . 3 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼𝑧) ∧ (𝑦 βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) β†’ βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏))))
3014, 29mpd 15 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)))
31 axtgsegcon.3 . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
32 axtgsegcon.4 . . 3 (πœ‘ β†’ 𝐡 ∈ 𝑃)
33 oveq1 7411 . . . . . . 7 (π‘Ž = 𝐴 β†’ (π‘Ž βˆ’ 𝑏) = (𝐴 βˆ’ 𝑏))
3433eqeq2d 2744 . . . . . 6 (π‘Ž = 𝐴 β†’ ((π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏) ↔ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝑏)))
3534anbi2d 630 . . . . 5 (π‘Ž = 𝐴 β†’ ((π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝑏))))
3635rexbidv 3179 . . . 4 (π‘Ž = 𝐴 β†’ (βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) ↔ βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝑏))))
37 oveq2 7412 . . . . . . 7 (𝑏 = 𝐡 β†’ (𝐴 βˆ’ 𝑏) = (𝐴 βˆ’ 𝐡))
3837eqeq2d 2744 . . . . . 6 (𝑏 = 𝐡 β†’ ((π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝑏) ↔ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡)))
3938anbi2d 630 . . . . 5 (𝑏 = 𝐡 β†’ ((π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝑏)) ↔ (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡))))
4039rexbidv 3179 . . . 4 (𝑏 = 𝐡 β†’ (βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝑏)) ↔ βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡))))
4136, 40rspc2v 3621 . . 3 ((𝐴 ∈ 𝑃 ∧ 𝐡 ∈ 𝑃) β†’ (βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) β†’ βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡))))
4231, 32, 41syl2anc 585 . 2 (πœ‘ β†’ (βˆ€π‘Ž ∈ 𝑃 βˆ€π‘ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (π‘Ž βˆ’ 𝑏)) β†’ βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡))))
4330, 42mpd 15 1 (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑃 (π‘Œ ∈ (𝑋𝐼𝑧) ∧ (π‘Œ βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∨ w3o 1087   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433  Vcvv 3475  [wsbc 3776   βˆ– cdif 3944   ∩ cin 3946  {csn 4627  β€˜cfv 6540  (class class class)co 7404   ∈ cmpo 7406  Basecbs 17140  distcds 17202  TarskiGcstrkg 27658  TarskiGCcstrkgc 27659  TarskiGBcstrkgb 27660  TarskiGCBcstrkgcb 27661  Itvcitv 27664  LineGclng 27665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7407  df-trkgcb 27681  df-trkg 27684
This theorem is referenced by:  tgcgrtriv  27715  tgbtwntriv2  27718  tgbtwnouttr2  27726  tgbtwndiff  27737  tgifscgr  27739  tgcgrxfr  27749  lnext  27798  tgbtwnconn1lem3  27805  tgbtwnconn1  27806  legtrid  27822  hlcgrex  27847  mirreu3  27885  miriso  27901  midexlem  27923  footexALT  27949  footex  27952  opphllem  27966  flatcgra  28055  dfcgra2  28061  f1otrg  28102
  Copyright terms: Public domain W3C validator