Step | Hyp | Ref
| Expression |
1 | | df-trkg 26814 |
. . . . . 6
⊢ TarskiG =
((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB
∩ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) |
2 | | inss2 4163 |
. . . . . . 7
⊢
((TarskiGC ∩ TarskiGB) ∩
(TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩
{𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) |
3 | | inss1 4162 |
. . . . . . 7
⊢
(TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆
TarskiGCB |
4 | 2, 3 | sstri 3930 |
. . . . . 6
⊢
((TarskiGC ∩ TarskiGB) ∩
(TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆
TarskiGCB |
5 | 1, 4 | eqsstri 3955 |
. . . . 5
⊢ TarskiG
⊆ TarskiGCB |
6 | | axtrkg.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
7 | 5, 6 | sselid 3919 |
. . . 4
⊢ (𝜑 → 𝐺 ∈
TarskiGCB) |
8 | | axtrkg.p |
. . . . . . 7
⊢ 𝑃 = (Base‘𝐺) |
9 | | axtrkg.d |
. . . . . . 7
⊢ − =
(dist‘𝐺) |
10 | | axtrkg.i |
. . . . . . 7
⊢ 𝐼 = (Itv‘𝐺) |
11 | 8, 9, 10 | istrkgcb 26817 |
. . . . . 6
⊢ (𝐺 ∈ TarskiGCB
↔ (𝐺 ∈ V ∧
(∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∀𝑐 ∈ 𝑃 ∀𝑣 ∈ 𝑃 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 − 𝑦) = (𝑎 − 𝑏) ∧ (𝑦 − 𝑧) = (𝑏 − 𝑐)) ∧ ((𝑥 − 𝑢) = (𝑎 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑏 − 𝑣)))) → (𝑧 − 𝑢) = (𝑐 − 𝑣)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏))))) |
12 | 11 | simprbi 497 |
. . . . 5
⊢ (𝐺 ∈ TarskiGCB
→ (∀𝑥 ∈
𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∀𝑐 ∈ 𝑃 ∀𝑣 ∈ 𝑃 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 − 𝑦) = (𝑎 − 𝑏) ∧ (𝑦 − 𝑧) = (𝑏 − 𝑐)) ∧ ((𝑥 − 𝑢) = (𝑎 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑏 − 𝑣)))) → (𝑧 − 𝑢) = (𝑐 − 𝑣)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)))) |
13 | 12 | simprd 496 |
. . . 4
⊢ (𝐺 ∈ TarskiGCB
→ ∀𝑥 ∈
𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏))) |
14 | 7, 13 | syl 17 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏))) |
15 | | axtgsegcon.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
16 | | axtgsegcon.2 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
17 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧)) |
18 | 17 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧))) |
19 | 18 | anbi1d 630 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)))) |
20 | 19 | rexbidv 3226 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) ↔ ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)))) |
21 | 20 | 2ralbidv 3129 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) ↔ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)))) |
22 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧))) |
23 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑦 − 𝑧) = (𝑌 − 𝑧)) |
24 | 23 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝑦 − 𝑧) = (𝑎 − 𝑏) ↔ (𝑌 − 𝑧) = (𝑎 − 𝑏))) |
25 | 22, 24 | anbi12d 631 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)))) |
26 | 25 | rexbidv 3226 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) ↔ ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)))) |
27 | 26 | 2ralbidv 3129 |
. . . . 5
⊢ (𝑦 = 𝑌 → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) ↔ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)))) |
28 | 21, 27 | rspc2v 3570 |
. . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)))) |
29 | 15, 16, 28 | syl2anc 584 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏)) → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)))) |
30 | 14, 29 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏))) |
31 | | axtgsegcon.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
32 | | axtgsegcon.4 |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
33 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 − 𝑏) = (𝐴 − 𝑏)) |
34 | 33 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑌 − 𝑧) = (𝑎 − 𝑏) ↔ (𝑌 − 𝑧) = (𝐴 − 𝑏))) |
35 | 34 | anbi2d 629 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝑏)))) |
36 | 35 | rexbidv 3226 |
. . . 4
⊢ (𝑎 = 𝐴 → (∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)) ↔ ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝑏)))) |
37 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝐴 − 𝑏) = (𝐴 − 𝐵)) |
38 | 37 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝑌 − 𝑧) = (𝐴 − 𝑏) ↔ (𝑌 − 𝑧) = (𝐴 − 𝐵))) |
39 | 38 | anbi2d 629 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝐵)))) |
40 | 39 | rexbidv 3226 |
. . . 4
⊢ (𝑏 = 𝐵 → (∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝑏)) ↔ ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝐵)))) |
41 | 36, 40 | rspc2v 3570 |
. . 3
⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)) → ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝐵)))) |
42 | 31, 32, 41 | syl2anc 584 |
. 2
⊢ (𝜑 → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝑎 − 𝑏)) → ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝐵)))) |
43 | 30, 42 | mpd 15 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝐵))) |