MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgsegcon Structured version   Visualization version   GIF version

Theorem axtgsegcon 28398
Description: Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment 𝐴𝐵, one can construct a line segment congruent to it, starting at any point 𝑌 and going in the direction of any ray containing 𝑌. The ray is determined by the point 𝑌 and a second point 𝑋, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point 𝑧 whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgsegcon.1 (𝜑𝑋𝑃)
axtgsegcon.2 (𝜑𝑌𝑃)
axtgsegcon.3 (𝜑𝐴𝑃)
axtgsegcon.4 (𝜑𝐵𝑃)
Assertion
Ref Expression
axtgsegcon (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,𝑌   𝑧,
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)

Proof of Theorem axtgsegcon
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28387 . . . . . 6 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss2 4204 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
3 inss1 4203 . . . . . . 7 (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆ TarskiGCB
42, 3sstri 3959 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGCB
51, 4eqsstri 3996 . . . . 5 TarskiG ⊆ TarskiGCB
6 axtrkg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3947 . . . 4 (𝜑𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . 7 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . . 7 = (dist‘𝐺)
10 axtrkg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgcb 28390 . . . . . 6 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
1211simprbi 496 . . . . 5 (𝐺 ∈ TarskiGCB → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
1312simprd 495 . . . 4 (𝐺 ∈ TarskiGCB → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
147, 13syl 17 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
15 axtgsegcon.1 . . . 4 (𝜑𝑋𝑃)
16 axtgsegcon.2 . . . 4 (𝜑𝑌𝑃)
17 oveq1 7397 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
1817eleq2d 2815 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
1918anbi1d 631 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
2019rexbidv 3158 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
21202ralbidv 3202 . . . . 5 (𝑥 = 𝑋 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
22 eleq1 2817 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
23 oveq1 7397 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
2423eqeq1d 2732 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑦 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝑎 𝑏)))
2522, 24anbi12d 632 . . . . . . 7 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2625rexbidv 3158 . . . . . 6 (𝑦 = 𝑌 → (∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
27262ralbidv 3202 . . . . 5 (𝑦 = 𝑌 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2821, 27rspc2v 3602 . . . 4 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2915, 16, 28syl2anc 584 . . 3 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
3014, 29mpd 15 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)))
31 axtgsegcon.3 . . 3 (𝜑𝐴𝑃)
32 axtgsegcon.4 . . 3 (𝜑𝐵𝑃)
33 oveq1 7397 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
3433eqeq2d 2741 . . . . . 6 (𝑎 = 𝐴 → ((𝑌 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝑏)))
3534anbi2d 630 . . . . 5 (𝑎 = 𝐴 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
3635rexbidv 3158 . . . 4 (𝑎 = 𝐴 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
37 oveq2 7398 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
3837eqeq2d 2741 . . . . . 6 (𝑏 = 𝐵 → ((𝑌 𝑧) = (𝐴 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝐵)))
3938anbi2d 630 . . . . 5 (𝑏 = 𝐵 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4039rexbidv 3158 . . . 4 (𝑏 = 𝐵 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4136, 40rspc2v 3602 . . 3 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4231, 32, 41syl2anc 584 . 2 (𝜑 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4330, 42mpd 15 1 (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  [wsbc 3756  cdif 3914  cin 3916  {csn 4592  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  TarskiGCcstrkgc 28362  TarskiGBcstrkgb 28363  TarskiGCBcstrkgcb 28364  Itvcitv 28367  LineGclng 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-trkgcb 28384  df-trkg 28387
This theorem is referenced by:  tgcgrtriv  28418  tgbtwntriv2  28421  tgbtwnouttr2  28429  tgbtwndiff  28440  tgifscgr  28442  tgcgrxfr  28452  lnext  28501  tgbtwnconn1lem3  28508  tgbtwnconn1  28509  legtrid  28525  hlcgrex  28550  mirreu3  28588  miriso  28604  midexlem  28626  footexALT  28652  footex  28655  opphllem  28669  flatcgra  28758  dfcgra2  28764  f1otrg  28805
  Copyright terms: Public domain W3C validator