MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgsegcon Structured version   Visualization version   GIF version

Theorem axtgsegcon 28435
Description: Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment 𝐴𝐵, one can construct a line segment congruent to it, starting at any point 𝑌 and going in the direction of any ray containing 𝑌. The ray is determined by the point 𝑌 and a second point 𝑋, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point 𝑧 whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgsegcon.1 (𝜑𝑋𝑃)
axtgsegcon.2 (𝜑𝑌𝑃)
axtgsegcon.3 (𝜑𝐴𝑃)
axtgsegcon.4 (𝜑𝐵𝑃)
Assertion
Ref Expression
axtgsegcon (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,𝑌   𝑧,
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)

Proof of Theorem axtgsegcon
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28424 . . . . . 6 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss2 4186 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
3 inss1 4185 . . . . . . 7 (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆ TarskiGCB
42, 3sstri 3942 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGCB
51, 4eqsstri 3979 . . . . 5 TarskiG ⊆ TarskiGCB
6 axtrkg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3930 . . . 4 (𝜑𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . 7 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . . 7 = (dist‘𝐺)
10 axtrkg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgcb 28427 . . . . . 6 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
1211simprbi 496 . . . . 5 (𝐺 ∈ TarskiGCB → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
1312simprd 495 . . . 4 (𝐺 ∈ TarskiGCB → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
147, 13syl 17 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
15 axtgsegcon.1 . . . 4 (𝜑𝑋𝑃)
16 axtgsegcon.2 . . . 4 (𝜑𝑌𝑃)
17 oveq1 7348 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
1817eleq2d 2815 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
1918anbi1d 631 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
2019rexbidv 3154 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
21202ralbidv 3194 . . . . 5 (𝑥 = 𝑋 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
22 eleq1 2817 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
23 oveq1 7348 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
2423eqeq1d 2732 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑦 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝑎 𝑏)))
2522, 24anbi12d 632 . . . . . . 7 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2625rexbidv 3154 . . . . . 6 (𝑦 = 𝑌 → (∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
27262ralbidv 3194 . . . . 5 (𝑦 = 𝑌 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2821, 27rspc2v 3586 . . . 4 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2915, 16, 28syl2anc 584 . . 3 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
3014, 29mpd 15 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)))
31 axtgsegcon.3 . . 3 (𝜑𝐴𝑃)
32 axtgsegcon.4 . . 3 (𝜑𝐵𝑃)
33 oveq1 7348 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
3433eqeq2d 2741 . . . . . 6 (𝑎 = 𝐴 → ((𝑌 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝑏)))
3534anbi2d 630 . . . . 5 (𝑎 = 𝐴 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
3635rexbidv 3154 . . . 4 (𝑎 = 𝐴 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
37 oveq2 7349 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
3837eqeq2d 2741 . . . . . 6 (𝑏 = 𝐵 → ((𝑌 𝑧) = (𝐴 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝐵)))
3938anbi2d 630 . . . . 5 (𝑏 = 𝐵 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4039rexbidv 3154 . . . 4 (𝑏 = 𝐵 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4136, 40rspc2v 3586 . . 3 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4231, 32, 41syl2anc 584 . 2 (𝜑 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4330, 42mpd 15 1 (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2110  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  [wsbc 3739  cdif 3897  cin 3899  {csn 4574  cfv 6477  (class class class)co 7341  cmpo 7343  Basecbs 17112  distcds 17162  TarskiGcstrkg 28398  TarskiGCcstrkgc 28399  TarskiGBcstrkgb 28400  TarskiGCBcstrkgcb 28401  Itvcitv 28404  LineGclng 28405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-ov 7344  df-trkgcb 28421  df-trkg 28424
This theorem is referenced by:  tgcgrtriv  28455  tgbtwntriv2  28458  tgbtwnouttr2  28466  tgbtwndiff  28477  tgifscgr  28479  tgcgrxfr  28489  lnext  28538  tgbtwnconn1lem3  28545  tgbtwnconn1  28546  legtrid  28562  hlcgrex  28587  mirreu3  28625  miriso  28641  midexlem  28663  footexALT  28689  footex  28692  opphllem  28706  flatcgra  28795  dfcgra2  28801  f1otrg  28842
  Copyright terms: Public domain W3C validator