MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgsegcon Structured version   Visualization version   GIF version

Theorem axtgsegcon 26729
Description: Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment 𝐴𝐵, one can construct a line segment congruent to it, starting at any point 𝑌 and going in the direction of any ray containing 𝑌. The ray is determined by the point 𝑌 and a second point 𝑋, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point 𝑧 whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgsegcon.1 (𝜑𝑋𝑃)
axtgsegcon.2 (𝜑𝑌𝑃)
axtgsegcon.3 (𝜑𝐴𝑃)
axtgsegcon.4 (𝜑𝐵𝑃)
Assertion
Ref Expression
axtgsegcon (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,𝑌   𝑧,
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)

Proof of Theorem axtgsegcon
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 26718 . . . . . 6 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss2 4160 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
3 inss1 4159 . . . . . . 7 (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆ TarskiGCB
42, 3sstri 3926 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGCB
51, 4eqsstri 3951 . . . . 5 TarskiG ⊆ TarskiGCB
6 axtrkg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3915 . . . 4 (𝜑𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . 7 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . . 7 = (dist‘𝐺)
10 axtrkg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgcb 26721 . . . . . 6 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
1211simprbi 496 . . . . 5 (𝐺 ∈ TarskiGCB → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
1312simprd 495 . . . 4 (𝐺 ∈ TarskiGCB → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
147, 13syl 17 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
15 axtgsegcon.1 . . . 4 (𝜑𝑋𝑃)
16 axtgsegcon.2 . . . 4 (𝜑𝑌𝑃)
17 oveq1 7262 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
1817eleq2d 2824 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
1918anbi1d 629 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
2019rexbidv 3225 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
21202ralbidv 3122 . . . . 5 (𝑥 = 𝑋 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
22 eleq1 2826 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
23 oveq1 7262 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
2423eqeq1d 2740 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑦 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝑎 𝑏)))
2522, 24anbi12d 630 . . . . . . 7 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2625rexbidv 3225 . . . . . 6 (𝑦 = 𝑌 → (∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
27262ralbidv 3122 . . . . 5 (𝑦 = 𝑌 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2821, 27rspc2v 3562 . . . 4 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2915, 16, 28syl2anc 583 . . 3 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
3014, 29mpd 15 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)))
31 axtgsegcon.3 . . 3 (𝜑𝐴𝑃)
32 axtgsegcon.4 . . 3 (𝜑𝐵𝑃)
33 oveq1 7262 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
3433eqeq2d 2749 . . . . . 6 (𝑎 = 𝐴 → ((𝑌 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝑏)))
3534anbi2d 628 . . . . 5 (𝑎 = 𝐴 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
3635rexbidv 3225 . . . 4 (𝑎 = 𝐴 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
37 oveq2 7263 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
3837eqeq2d 2749 . . . . . 6 (𝑏 = 𝐵 → ((𝑌 𝑧) = (𝐴 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝐵)))
3938anbi2d 628 . . . . 5 (𝑏 = 𝐵 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4039rexbidv 3225 . . . 4 (𝑏 = 𝐵 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4136, 40rspc2v 3562 . . 3 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4231, 32, 41syl2anc 583 . 2 (𝜑 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4330, 42mpd 15 1 (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  [wsbc 3711  cdif 3880  cin 3882  {csn 4558  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  TarskiGCcstrkgc 26694  TarskiGBcstrkgb 26695  TarskiGCBcstrkgcb 26696  Itvcitv 26699  LineGclng 26700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgcgrtriv  26749  tgbtwntriv2  26752  tgbtwnouttr2  26760  tgbtwndiff  26771  tgifscgr  26773  tgcgrxfr  26783  lnext  26832  tgbtwnconn1lem3  26839  tgbtwnconn1  26840  legtrid  26856  hlcgrex  26881  mirreu3  26919  miriso  26935  midexlem  26957  footexALT  26983  footex  26986  opphllem  27000  flatcgra  27089  dfcgra2  27095  f1otrg  27136
  Copyright terms: Public domain W3C validator