MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcont1 Structured version   Visualization version   GIF version

Theorem axtgcont1 28466
Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. This axiom (scheme) asserts that any two sets 𝑆 and 𝑇 (of points) such that the elements of 𝑆 precede the elements of 𝑇 with respect to some point 𝑎 (that is, 𝑥 is between 𝑎 and 𝑦 whenever 𝑥 is in 𝑋 and 𝑦 is in 𝑌) are separated by some point 𝑏; this is explained in Axiom 11 of [Tarski1999] p. 185. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcont.1 (𝜑𝑆𝑃)
axtgcont.2 (𝜑𝑇𝑃)
Assertion
Ref Expression
axtgcont1 (𝜑 → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦   𝑎,𝑏,𝑥,𝑦,𝐼   𝑃,𝑎,𝑏,𝑥,𝑦   𝑆,𝑎,𝑏,𝑥   𝑇,𝑎,𝑏,𝑥,𝑦   ,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)   𝑆(𝑦)   𝐺(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem axtgcont1
Dummy variables 𝑓 𝑖 𝑝 𝑧 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28451 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4186 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss2 4187 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
42, 3sstri 3940 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
51, 4eqsstri 3977 . . . 4 TarskiG ⊆ TarskiGB
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3928 . . 3 (𝜑𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgb 28453 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1211simprbi 496 . . . 4 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1312simp3d 1144 . . 3 (𝐺 ∈ TarskiGB → ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
147, 13syl 17 . 2 (𝜑 → ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
15 axtgcont.1 . . . 4 (𝜑𝑆𝑃)
168fvexi 6845 . . . . . 6 𝑃 ∈ V
1716ssex 5263 . . . . 5 (𝑆𝑃𝑆 ∈ V)
18 elpwg 4554 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ 𝒫 𝑃𝑆𝑃))
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑃𝑆𝑃))
2015, 19mpbird 257 . . 3 (𝜑𝑆 ∈ 𝒫 𝑃)
21 axtgcont.2 . . . 4 (𝜑𝑇𝑃)
2216ssex 5263 . . . . 5 (𝑇𝑃𝑇 ∈ V)
23 elpwg 4554 . . . . 5 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑃𝑇𝑃))
2421, 22, 233syl 18 . . . 4 (𝜑 → (𝑇 ∈ 𝒫 𝑃𝑇𝑃))
2521, 24mpbird 257 . . 3 (𝜑𝑇 ∈ 𝒫 𝑃)
26 raleq 3290 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦)))
2726rexbidv 3157 . . . . 5 (𝑠 = 𝑆 → (∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦)))
28 raleq 3290 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∀𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
2928rexbidv 3157 . . . . 5 (𝑠 = 𝑆 → (∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
3027, 29imbi12d 344 . . . 4 (𝑠 = 𝑆 → ((∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ (∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
31 raleq 3290 . . . . . 6 (𝑡 = 𝑇 → (∀𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦)))
3231rexralbidv 3199 . . . . 5 (𝑡 = 𝑇 → (∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦)))
33 raleq 3290 . . . . . 6 (𝑡 = 𝑇 → (∀𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∀𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
3433rexralbidv 3199 . . . . 5 (𝑡 = 𝑇 → (∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
3532, 34imbi12d 344 . . . 4 (𝑡 = 𝑇 → ((∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3630, 35rspc2v 3584 . . 3 ((𝑆 ∈ 𝒫 𝑃𝑇 ∈ 𝒫 𝑃) → (∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3720, 25, 36syl2anc 584 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3814, 37mpd 15 1 (𝜑 → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  [wsbc 3737  cdif 3895  cin 3897  wss 3898  𝒫 cpw 4551  {csn 4577  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  distcds 17177  TarskiGcstrkg 28425  TarskiGCcstrkgc 28426  TarskiGBcstrkgb 28427  TarskiGCBcstrkgcb 28428  Itvcitv 28431  LineGclng 28432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-trkgb 28447  df-trkg 28451
This theorem is referenced by:  axtgcont  28467
  Copyright terms: Public domain W3C validator