MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcont1 Structured version   Visualization version   GIF version

Theorem axtgcont1 28402
Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. This axiom (scheme) asserts that any two sets 𝑆 and 𝑇 (of points) such that the elements of 𝑆 precede the elements of 𝑇 with respect to some point 𝑎 (that is, 𝑥 is between 𝑎 and 𝑦 whenever 𝑥 is in 𝑋 and 𝑦 is in 𝑌) are separated by some point 𝑏; this is explained in Axiom 11 of [Tarski1999] p. 185. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcont.1 (𝜑𝑆𝑃)
axtgcont.2 (𝜑𝑇𝑃)
Assertion
Ref Expression
axtgcont1 (𝜑 → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦   𝑎,𝑏,𝑥,𝑦,𝐼   𝑃,𝑎,𝑏,𝑥,𝑦   𝑆,𝑎,𝑏,𝑥   𝑇,𝑎,𝑏,𝑥,𝑦   ,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)   𝑆(𝑦)   𝐺(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem axtgcont1
Dummy variables 𝑓 𝑖 𝑝 𝑧 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28387 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4203 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss2 4204 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
42, 3sstri 3959 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
51, 4eqsstri 3996 . . . 4 TarskiG ⊆ TarskiGB
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3947 . . 3 (𝜑𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgb 28389 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1211simprbi 496 . . . 4 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1312simp3d 1144 . . 3 (𝐺 ∈ TarskiGB → ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
147, 13syl 17 . 2 (𝜑 → ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
15 axtgcont.1 . . . 4 (𝜑𝑆𝑃)
168fvexi 6875 . . . . . 6 𝑃 ∈ V
1716ssex 5279 . . . . 5 (𝑆𝑃𝑆 ∈ V)
18 elpwg 4569 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ 𝒫 𝑃𝑆𝑃))
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑃𝑆𝑃))
2015, 19mpbird 257 . . 3 (𝜑𝑆 ∈ 𝒫 𝑃)
21 axtgcont.2 . . . 4 (𝜑𝑇𝑃)
2216ssex 5279 . . . . 5 (𝑇𝑃𝑇 ∈ V)
23 elpwg 4569 . . . . 5 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑃𝑇𝑃))
2421, 22, 233syl 18 . . . 4 (𝜑 → (𝑇 ∈ 𝒫 𝑃𝑇𝑃))
2521, 24mpbird 257 . . 3 (𝜑𝑇 ∈ 𝒫 𝑃)
26 raleq 3298 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦)))
2726rexbidv 3158 . . . . 5 (𝑠 = 𝑆 → (∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦)))
28 raleq 3298 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∀𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
2928rexbidv 3158 . . . . 5 (𝑠 = 𝑆 → (∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
3027, 29imbi12d 344 . . . 4 (𝑠 = 𝑆 → ((∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ (∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
31 raleq 3298 . . . . . 6 (𝑡 = 𝑇 → (∀𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦)))
3231rexralbidv 3204 . . . . 5 (𝑡 = 𝑇 → (∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦)))
33 raleq 3298 . . . . . 6 (𝑡 = 𝑇 → (∀𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∀𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
3433rexralbidv 3204 . . . . 5 (𝑡 = 𝑇 → (∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
3532, 34imbi12d 344 . . . 4 (𝑡 = 𝑇 → ((∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3630, 35rspc2v 3602 . . 3 ((𝑆 ∈ 𝒫 𝑃𝑇 ∈ 𝒫 𝑃) → (∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3720, 25, 36syl2anc 584 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3814, 37mpd 15 1 (𝜑 → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  [wsbc 3756  cdif 3914  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  TarskiGCcstrkgc 28362  TarskiGBcstrkgb 28363  TarskiGCBcstrkgcb 28364  Itvcitv 28367  LineGclng 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-trkgb 28383  df-trkg 28387
This theorem is referenced by:  axtgcont  28403
  Copyright terms: Public domain W3C validator