MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcont1 Structured version   Visualization version   GIF version

Theorem axtgcont1 28431
Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. This axiom (scheme) asserts that any two sets 𝑆 and 𝑇 (of points) such that the elements of 𝑆 precede the elements of 𝑇 with respect to some point 𝑎 (that is, 𝑥 is between 𝑎 and 𝑦 whenever 𝑥 is in 𝑋 and 𝑦 is in 𝑌) are separated by some point 𝑏; this is explained in Axiom 11 of [Tarski1999] p. 185. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcont.1 (𝜑𝑆𝑃)
axtgcont.2 (𝜑𝑇𝑃)
Assertion
Ref Expression
axtgcont1 (𝜑 → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦   𝑎,𝑏,𝑥,𝑦,𝐼   𝑃,𝑎,𝑏,𝑥,𝑦   𝑆,𝑎,𝑏,𝑥   𝑇,𝑎,𝑏,𝑥,𝑦   ,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)   𝑆(𝑦)   𝐺(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem axtgcont1
Dummy variables 𝑓 𝑖 𝑝 𝑧 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28416 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4190 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss2 4191 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
42, 3sstri 3947 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
51, 4eqsstri 3984 . . . 4 TarskiG ⊆ TarskiGB
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3935 . . 3 (𝜑𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgb 28418 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1211simprbi 496 . . . 4 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1312simp3d 1144 . . 3 (𝐺 ∈ TarskiGB → ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
147, 13syl 17 . 2 (𝜑 → ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
15 axtgcont.1 . . . 4 (𝜑𝑆𝑃)
168fvexi 6840 . . . . . 6 𝑃 ∈ V
1716ssex 5263 . . . . 5 (𝑆𝑃𝑆 ∈ V)
18 elpwg 4556 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ 𝒫 𝑃𝑆𝑃))
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑃𝑆𝑃))
2015, 19mpbird 257 . . 3 (𝜑𝑆 ∈ 𝒫 𝑃)
21 axtgcont.2 . . . 4 (𝜑𝑇𝑃)
2216ssex 5263 . . . . 5 (𝑇𝑃𝑇 ∈ V)
23 elpwg 4556 . . . . 5 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑃𝑇𝑃))
2421, 22, 233syl 18 . . . 4 (𝜑 → (𝑇 ∈ 𝒫 𝑃𝑇𝑃))
2521, 24mpbird 257 . . 3 (𝜑𝑇 ∈ 𝒫 𝑃)
26 raleq 3287 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦)))
2726rexbidv 3153 . . . . 5 (𝑠 = 𝑆 → (∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦)))
28 raleq 3287 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∀𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
2928rexbidv 3153 . . . . 5 (𝑠 = 𝑆 → (∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))
3027, 29imbi12d 344 . . . 4 (𝑠 = 𝑆 → ((∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ (∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
31 raleq 3287 . . . . . 6 (𝑡 = 𝑇 → (∀𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦)))
3231rexralbidv 3195 . . . . 5 (𝑡 = 𝑇 → (∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦)))
33 raleq 3287 . . . . . 6 (𝑡 = 𝑇 → (∀𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∀𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
3433rexralbidv 3195 . . . . 5 (𝑡 = 𝑇 → (∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
3532, 34imbi12d 344 . . . 4 (𝑡 = 𝑇 → ((∃𝑎𝑃𝑥𝑆𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3630, 35rspc2v 3590 . . 3 ((𝑆 ∈ 𝒫 𝑃𝑇 ∈ 𝒫 𝑃) → (∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3720, 25, 36syl2anc 584 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))))
3814, 37mpd 15 1 (𝜑 → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  [wsbc 3744  cdif 3902  cin 3904  wss 3905  𝒫 cpw 4553  {csn 4579  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17138  distcds 17188  TarskiGcstrkg 28390  TarskiGCcstrkgc 28391  TarskiGBcstrkgb 28392  TarskiGCBcstrkgcb 28393  Itvcitv 28396  LineGclng 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-trkgb 28412  df-trkg 28416
This theorem is referenced by:  axtgcont  28432
  Copyright terms: Public domain W3C validator