MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengtrkg Structured version   Visualization version   GIF version

Theorem eengtrkg 29015
Description: The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengtrkg (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)

Proof of Theorem eengtrkg
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6921 . . . . . 6 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ V)
2 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
3 simprl 771 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
4 eengbas 29010 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
54adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
63, 5eleqtrrd 2841 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
7 simprr 773 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
87, 5eleqtrrd 2841 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
9 axcgrrflx 28943 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
102, 6, 8, 9syl3anc 1370 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
11 eqid 2734 . . . . . . . . 9 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
12 eqid 2734 . . . . . . . . 9 (dist‘(EEG‘𝑁)) = (dist‘(EEG‘𝑁))
132, 11, 12, 3, 7, 7, 3ecgrtg 29012 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥)))
1410, 13mpbid 232 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
1514ralrimivva 3199 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
16 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
17 simpr1 1193 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
18 simpr2 1194 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
19 simpr3 1195 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
2016, 11, 12, 17, 18, 19, 19ecgrtg 29012 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧)))
2163adantr3 1170 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
2283adantr3 1170 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
234adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
2419, 23eleqtrrd 2841 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
25 axcgrid 28945 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2616, 21, 22, 24, 25syl13anc 1371 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2720, 26sylbird 260 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
2827ralrimivvva 3202 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
291, 15, 28jca32 515 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
30 eqid 2734 . . . . . 6 (Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁))
3111, 12, 30istrkgc 28476 . . . . 5 ((EEG‘𝑁) ∈ TarskiGC ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
3229, 31sylibr 234 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGC)
332, 11, 30, 3, 3, 7ebtwntg 29011 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)))
34 axbtwnid 28968 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
352, 8, 6, 34syl3anc 1370 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
3633, 35sylbird 260 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑦 = 𝑥))
3736imp 406 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑦 = 𝑥)
3837equcomd 2015 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑥 = 𝑦)
3938ex 412 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
4039ralrimivva 3199 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
41 simpll 767 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
426adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
438adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
443adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
457adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
46 simpr1 1193 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
4741, 44, 45, 46, 24syl13anc 1371 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
48 simpr2 1194 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
4941, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
5048, 49eleqtrrd 2841 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
51 simpr3 1195 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
5251, 49eleqtrrd 2841 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
53 axpasch 28970 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5441, 42, 43, 47, 50, 52, 53syl132anc 1387 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5541, 11, 30, 44, 46, 48ebtwntg 29011 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
5641, 11, 30, 45, 46, 51ebtwntg 29011 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑣 Btwn ⟨𝑦, 𝑧⟩ ↔ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)))
5755, 56anbi12d 632 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) ↔ (𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧))))
58 simplll 775 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
5948adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
6045adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
61 simpr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
6249adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
6361, 62eleqtrd 2840 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
6458, 11, 30, 59, 60, 63ebtwntg 29011 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑢, 𝑦⟩ ↔ 𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦)))
6551adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
6644adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
6758, 11, 30, 65, 66, 63ebtwntg 29011 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑣, 𝑥⟩ ↔ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))
6864, 67anbi12d 632 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ (𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
6949, 68rexeqbidva 3330 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7054, 57, 693imtr3d 293 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7170ralrimivvva 3202 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7271ralrimivva 3199 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
73 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
74 elpwi 4611 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
7574ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
764adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
7775, 76sseqtrrd 4036 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (𝔼‘𝑁))
78 elpwi 4611 . . . . . . . . . . 11 (𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
7978ad2antll 729 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
8079, 76sseqtrrd 4036 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (𝔼‘𝑁))
81 simpll 767 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑁 ∈ ℕ)
82 simplrl 777 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑠 ⊆ (𝔼‘𝑁))
83 simplrr 778 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑡 ⊆ (𝔼‘𝑁))
84 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)
85 axcont 29005 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8681, 82, 83, 84, 85syl13anc 1371 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8786ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
8873, 77, 80, 87syl12anc 837 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
89 simplll 775 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
90 simplr 769 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (𝔼‘𝑁))
9176ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
9290, 91eleqtrd 2840 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
9379ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
94 simprr 773 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
9593, 94sseldd 3995 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
9675ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
97 simprl 771 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
9896, 97sseldd 3995 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
9989, 11, 30, 92, 95, 98ebtwntg 29011 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
100992ralbidva 3216 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
10176, 100rexeqbidva 3330 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
102 simplll 775 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
10375ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
104 simprl 771 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
105103, 104sseldd 3995 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
10679ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
107 simprr 773 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
108106, 107sseldd 3995 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
109 simplr 769 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (𝔼‘𝑁))
11076ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
111109, 110eleqtrd 2840 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
112102, 11, 30, 105, 108, 111ebtwntg 29011 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
1131122ralbidva 3216 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11476, 113rexeqbidva 3330 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11588, 101, 1143imtr3d 293 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
116115ralrimivva 3199 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11740, 72, 1163jca 1127 . . . . 5 (𝑁 ∈ ℕ → (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))))
11811, 12, 30istrkgb 28477 . . . . 5 ((EEG‘𝑁) ∈ TarskiGB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))))
1191, 117, 118sylanbrc 583 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGB)
12032, 119elind 4209 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGC ∩ TarskiGB))
121 simplll 775 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1223ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
123121, 4syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
124122, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1257ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
126125, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
127 simplr1 1214 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
128127, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
129 simplr2 1215 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
130129, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
131 simplr3 1216 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
132131, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
133 simpr1 1193 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
134133, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
135 simpr2 1194 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (Base‘(EEG‘𝑁)))
136135, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (𝔼‘𝑁))
137 simpr3 1195 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
138137, 123eleqtrrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
139 3anass 1094 . . . . . . . . . . . 12 (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))))
140 ax5seg 28967 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
141139, 140biimtrrid 243 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
142121, 124, 126, 128, 130, 132, 134, 136, 138, 141syl333anc 1401 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
143121, 11, 30, 122, 127, 125ebtwntg 29011 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
144121, 11, 30, 131, 135, 133ebtwntg 29011 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)))
145143, 1443anbi23d 1438 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ↔ (𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐))))
146121, 11, 12, 122, 125, 131, 133ecgrtg 29012 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
147121, 11, 12, 125, 127, 133, 135ecgrtg 29012 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)))
148146, 147anbi12d 632 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐))))
149121, 11, 12, 122, 129, 131, 137ecgrtg 29012 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣)))
150121, 11, 12, 125, 129, 133, 137ecgrtg 29012 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))
151149, 150anbi12d 632 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))
152148, 151anbi12d 632 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))))
153145, 152anbi12d 632 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) ↔ ((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))))
154121, 11, 12, 127, 129, 135, 137ecgrtg 29012 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩ ↔ (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
155142, 153, 1543imtr3d 293 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
156155ralrimivvva 3202 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
157156ralrimivvva 3202 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
158157ralrimivva 3199 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
159 simpll 767 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1606adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1618adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
162 simprl 771 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
163159, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
164162, 163eleqtrrd 2841 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
165 simprr 773 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
166165, 163eleqtrrd 2841 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
167 axsegcon 28956 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
168159, 160, 161, 164, 166, 167syl122anc 1378 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
169 simplll 775 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
1703ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
171 simpr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁))
172163adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
173171, 172eleqtrd 2840 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
1747ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
175169, 11, 30, 170, 173, 174ebtwntg 29011 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
176 simplrl 777 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
177 simplrr 778 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
178169, 11, 12, 174, 173, 176, 177ecgrtg 29012 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
179175, 178anbi12d 632 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
180163, 179rexeqbidva 3330 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
181168, 180mpbid 232 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
182181ralrimivva 3199 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
183182ralrimivva 3199 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
1841, 158, 183jca32 515 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
18511, 12, 30istrkgcb 28478 . . . . 5 ((EEG‘𝑁) ∈ TarskiGCB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
186184, 185sylibr 234 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGCB)
18711, 30elntg 29013 . . . . 5 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))}))
18811, 12, 30istrkgl 28480 . . . . 5 ((EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ ((EEG‘𝑁) ∈ V ∧ (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))})))
1891, 187, 188sylanbrc 583 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
190186, 189elind 4209 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
191120, 190elind 4209 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
192 df-trkg 28475 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
193191, 192eleqtrrdi 2849 1 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1536  wcel 2105  {cab 2711  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  [wsbc 3790  cdif 3959  cin 3961  wss 3962  𝒫 cpw 4604  {csn 4630  cop 4636   class class class wbr 5147  cfv 6562  (class class class)co 7430  cmpo 7432  cn 12263  Basecbs 17244  distcds 17306  TarskiGcstrkg 28449  TarskiGCcstrkgc 28450  TarskiGBcstrkgb 28451  TarskiGCBcstrkgcb 28452  Itvcitv 28455  LineGclng 28456  𝔼cee 28917   Btwn cbtwn 28918  Cgrccgr 28919  EEGceeng 29006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-ds 17319  df-itv 28457  df-lng 28458  df-trkgc 28470  df-trkgb 28471  df-trkgcb 28472  df-trkg 28475  df-ee 28920  df-btwn 28921  df-cgr 28922  df-eeng 29007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator