MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengtrkg Structured version   Visualization version   GIF version

Theorem eengtrkg 27257
Description: The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengtrkg (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)

Proof of Theorem eengtrkg
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6771 . . . . . 6 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ V)
2 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
3 simprl 767 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
4 eengbas 27252 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
54adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
63, 5eleqtrrd 2842 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
7 simprr 769 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
87, 5eleqtrrd 2842 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
9 axcgrrflx 27185 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
102, 6, 8, 9syl3anc 1369 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
11 eqid 2738 . . . . . . . . 9 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
12 eqid 2738 . . . . . . . . 9 (dist‘(EEG‘𝑁)) = (dist‘(EEG‘𝑁))
132, 11, 12, 3, 7, 7, 3ecgrtg 27254 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥)))
1410, 13mpbid 231 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
1514ralrimivva 3114 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
16 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
17 simpr1 1192 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
18 simpr2 1193 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
19 simpr3 1194 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
2016, 11, 12, 17, 18, 19, 19ecgrtg 27254 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧)))
2163adantr3 1169 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
2283adantr3 1169 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
234adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
2419, 23eleqtrrd 2842 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
25 axcgrid 27187 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2616, 21, 22, 24, 25syl13anc 1370 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2720, 26sylbird 259 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
2827ralrimivvva 3115 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
291, 15, 28jca32 515 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
30 eqid 2738 . . . . . 6 (Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁))
3111, 12, 30istrkgc 26719 . . . . 5 ((EEG‘𝑁) ∈ TarskiGC ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
3229, 31sylibr 233 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGC)
332, 11, 30, 3, 3, 7ebtwntg 27253 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)))
34 axbtwnid 27210 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
352, 8, 6, 34syl3anc 1369 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
3633, 35sylbird 259 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑦 = 𝑥))
3736imp 406 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑦 = 𝑥)
3837equcomd 2023 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑥 = 𝑦)
3938ex 412 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
4039ralrimivva 3114 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
41 simpll 763 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
426adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
438adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
443adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
457adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
46 simpr1 1192 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
4741, 44, 45, 46, 24syl13anc 1370 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
48 simpr2 1193 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
4941, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
5048, 49eleqtrrd 2842 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
51 simpr3 1194 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
5251, 49eleqtrrd 2842 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
53 axpasch 27212 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5441, 42, 43, 47, 50, 52, 53syl132anc 1386 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5541, 11, 30, 44, 46, 48ebtwntg 27253 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
5641, 11, 30, 45, 46, 51ebtwntg 27253 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑣 Btwn ⟨𝑦, 𝑧⟩ ↔ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)))
5755, 56anbi12d 630 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) ↔ (𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧))))
58 simplll 771 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
5948adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
6045adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
61 simpr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
6249adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
6361, 62eleqtrd 2841 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
6458, 11, 30, 59, 60, 63ebtwntg 27253 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑢, 𝑦⟩ ↔ 𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦)))
6551adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
6644adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
6758, 11, 30, 65, 66, 63ebtwntg 27253 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑣, 𝑥⟩ ↔ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))
6864, 67anbi12d 630 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ (𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
6949, 68rexeqbidva 3346 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7054, 57, 693imtr3d 292 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7170ralrimivvva 3115 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7271ralrimivva 3114 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
73 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
74 elpwi 4539 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
7574ad2antrl 724 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
764adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
7775, 76sseqtrrd 3958 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (𝔼‘𝑁))
78 elpwi 4539 . . . . . . . . . . 11 (𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
7978ad2antll 725 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
8079, 76sseqtrrd 3958 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (𝔼‘𝑁))
81 simpll 763 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑁 ∈ ℕ)
82 simplrl 773 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑠 ⊆ (𝔼‘𝑁))
83 simplrr 774 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑡 ⊆ (𝔼‘𝑁))
84 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)
85 axcont 27247 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8681, 82, 83, 84, 85syl13anc 1370 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8786ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
8873, 77, 80, 87syl12anc 833 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
89 simplll 771 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
90 simplr 765 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (𝔼‘𝑁))
9176ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
9290, 91eleqtrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
9379ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
94 simprr 769 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
9593, 94sseldd 3918 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
9675ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
97 simprl 767 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
9896, 97sseldd 3918 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
9989, 11, 30, 92, 95, 98ebtwntg 27253 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
100992ralbidva 3121 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
10176, 100rexeqbidva 3346 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
102 simplll 771 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
10375ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
104 simprl 767 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
105103, 104sseldd 3918 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
10679ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
107 simprr 769 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
108106, 107sseldd 3918 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
109 simplr 765 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (𝔼‘𝑁))
11076ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
111109, 110eleqtrd 2841 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
112102, 11, 30, 105, 108, 111ebtwntg 27253 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
1131122ralbidva 3121 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11476, 113rexeqbidva 3346 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11588, 101, 1143imtr3d 292 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
116115ralrimivva 3114 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11740, 72, 1163jca 1126 . . . . 5 (𝑁 ∈ ℕ → (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))))
11811, 12, 30istrkgb 26720 . . . . 5 ((EEG‘𝑁) ∈ TarskiGB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))))
1191, 117, 118sylanbrc 582 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGB)
12032, 119elind 4124 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGC ∩ TarskiGB))
121 simplll 771 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1223ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
123121, 4syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
124122, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1257ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
126125, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
127 simplr1 1213 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
128127, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
129 simplr2 1214 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
130129, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
131 simplr3 1215 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
132131, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
133 simpr1 1192 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
134133, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
135 simpr2 1193 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (Base‘(EEG‘𝑁)))
136135, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (𝔼‘𝑁))
137 simpr3 1194 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
138137, 123eleqtrrd 2842 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
139 3anass 1093 . . . . . . . . . . . 12 (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))))
140 ax5seg 27209 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
141139, 140syl5bir 242 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
142121, 124, 126, 128, 130, 132, 134, 136, 138, 141syl333anc 1400 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
143121, 11, 30, 122, 127, 125ebtwntg 27253 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
144121, 11, 30, 131, 135, 133ebtwntg 27253 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)))
145143, 1443anbi23d 1437 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ↔ (𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐))))
146121, 11, 12, 122, 125, 131, 133ecgrtg 27254 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
147121, 11, 12, 125, 127, 133, 135ecgrtg 27254 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)))
148146, 147anbi12d 630 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐))))
149121, 11, 12, 122, 129, 131, 137ecgrtg 27254 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣)))
150121, 11, 12, 125, 129, 133, 137ecgrtg 27254 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))
151149, 150anbi12d 630 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))
152148, 151anbi12d 630 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))))
153145, 152anbi12d 630 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) ↔ ((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))))
154121, 11, 12, 127, 129, 135, 137ecgrtg 27254 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩ ↔ (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
155142, 153, 1543imtr3d 292 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
156155ralrimivvva 3115 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
157156ralrimivvva 3115 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
158157ralrimivva 3114 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
159 simpll 763 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1606adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1618adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
162 simprl 767 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
163159, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
164162, 163eleqtrrd 2842 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
165 simprr 769 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
166165, 163eleqtrrd 2842 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
167 axsegcon 27198 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
168159, 160, 161, 164, 166, 167syl122anc 1377 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
169 simplll 771 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
1703ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
171 simpr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁))
172163adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
173171, 172eleqtrd 2841 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
1747ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
175169, 11, 30, 170, 173, 174ebtwntg 27253 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
176 simplrl 773 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
177 simplrr 774 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
178169, 11, 12, 174, 173, 176, 177ecgrtg 27254 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
179175, 178anbi12d 630 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
180163, 179rexeqbidva 3346 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
181168, 180mpbid 231 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
182181ralrimivva 3114 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
183182ralrimivva 3114 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
1841, 158, 183jca32 515 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
18511, 12, 30istrkgcb 26721 . . . . 5 ((EEG‘𝑁) ∈ TarskiGCB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
186184, 185sylibr 233 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGCB)
18711, 30elntg 27255 . . . . 5 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))}))
18811, 12, 30istrkgl 26723 . . . . 5 ((EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ ((EEG‘𝑁) ∈ V ∧ (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))})))
1891, 187, 188sylanbrc 582 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
190186, 189elind 4124 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
191120, 190elind 4124 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
192 df-trkg 26718 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
193191, 192eleqtrrdi 2850 1 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  [wsbc 3711  cdif 3880  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cmpo 7257  cn 11903  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  TarskiGCcstrkgc 26694  TarskiGBcstrkgb 26695  TarskiGCBcstrkgcb 26696  Itvcitv 26699  LineGclng 26700  𝔼cee 27159   Btwn cbtwn 27160  Cgrccgr 27161  EEGceeng 27248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-ds 16910  df-itv 26701  df-lng 26702  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-ee 27162  df-btwn 27163  df-cgr 27164  df-eeng 27249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator