Step | Hyp | Ref
| Expression |
1 | | fvexd 6783 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
V) |
2 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
3 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
4 | | eengbas 27330 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
5 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
6 | 3, 5 | eleqtrrd 2843 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁)) |
7 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
8 | 7, 5 | eleqtrrd 2843 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁)) |
9 | | axcgrrflx 27263 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 〈𝑥, 𝑦〉Cgr〈𝑦, 𝑥〉) |
10 | 2, 6, 8, 9 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 〈𝑥, 𝑦〉Cgr〈𝑦, 𝑥〉) |
11 | | eqid 2739 |
. . . . . . . . 9
⊢
(Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁)) |
12 | | eqid 2739 |
. . . . . . . . 9
⊢
(dist‘(EEG‘𝑁)) = (dist‘(EEG‘𝑁)) |
13 | 2, 11, 12, 3, 7, 7,
3 | ecgrtg 27332 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (〈𝑥, 𝑦〉Cgr〈𝑦, 𝑥〉 ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))) |
14 | 10, 13 | mpbid 231 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥)) |
15 | 14 | ralrimivva 3116 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥)) |
16 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
17 | | simpr1 1192 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
18 | | simpr2 1193 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
19 | | simpr3 1194 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁))) |
20 | 16, 11, 12, 17, 18, 19, 19 | ecgrtg 27332 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → (〈𝑥, 𝑦〉Cgr〈𝑧, 𝑧〉 ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧))) |
21 | 6 | 3adantr3 1169 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁)) |
22 | 8 | 3adantr3 1169 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁)) |
23 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
24 | 19, 23 | eleqtrrd 2843 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁)) |
25 | | axcgrid 27265 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (〈𝑥, 𝑦〉Cgr〈𝑧, 𝑧〉 → 𝑥 = 𝑦)) |
26 | 16, 21, 22, 24, 25 | syl13anc 1370 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → (〈𝑥, 𝑦〉Cgr〈𝑧, 𝑧〉 → 𝑥 = 𝑦)) |
27 | 20, 26 | sylbird 259 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦)) |
28 | 27 | ralrimivvva 3117 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦)) |
29 | 1, 15, 28 | jca32 515 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((EEG‘𝑁) ∈ V
∧ (∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦)))) |
30 | | eqid 2739 |
. . . . . 6
⊢
(Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁)) |
31 | 11, 12, 30 | istrkgc 26796 |
. . . . 5
⊢
((EEG‘𝑁)
∈ TarskiGC ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦)))) |
32 | 29, 31 | sylibr 233 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
TarskiGC) |
33 | 2, 11, 30, 3, 3, 7 | ebtwntg 27331 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (𝑦 Btwn 〈𝑥, 𝑥〉 ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥))) |
34 | | axbtwnid 27288 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑦 Btwn 〈𝑥, 𝑥〉 → 𝑦 = 𝑥)) |
35 | 2, 8, 6, 34 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (𝑦 Btwn 〈𝑥, 𝑥〉 → 𝑦 = 𝑥)) |
36 | 33, 35 | sylbird 259 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑦 = 𝑥)) |
37 | 36 | imp 406 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑦 = 𝑥) |
38 | 37 | equcomd 2025 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑥 = 𝑦) |
39 | 38 | ex 412 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦)) |
40 | 39 | ralrimivva 3116 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦)) |
41 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
42 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁)) |
43 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁)) |
44 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
45 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
46 | | simpr1 1192 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁))) |
47 | 41, 44, 45, 46, 24 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁)) |
48 | | simpr2 1193 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁))) |
49 | 41, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
50 | 48, 49 | eleqtrrd 2843 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁)) |
51 | | simpr3 1194 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁))) |
52 | 51, 49 | eleqtrrd 2843 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁)) |
53 | | axpasch 27290 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ((𝑢 Btwn 〈𝑥, 𝑧〉 ∧ 𝑣 Btwn 〈𝑦, 𝑧〉) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn 〈𝑢, 𝑦〉 ∧ 𝑎 Btwn 〈𝑣, 𝑥〉))) |
54 | 41, 42, 43, 47, 50, 52, 53 | syl132anc 1386 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn 〈𝑥, 𝑧〉 ∧ 𝑣 Btwn 〈𝑦, 𝑧〉) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn 〈𝑢, 𝑦〉 ∧ 𝑎 Btwn 〈𝑣, 𝑥〉))) |
55 | 41, 11, 30, 44, 46, 48 | ebtwntg 27331 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn 〈𝑥, 𝑧〉 ↔ 𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))) |
56 | 41, 11, 30, 45, 46, 51 | ebtwntg 27331 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑣 Btwn 〈𝑦, 𝑧〉 ↔ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧))) |
57 | 55, 56 | anbi12d 630 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn 〈𝑥, 𝑧〉 ∧ 𝑣 Btwn 〈𝑦, 𝑧〉) ↔ (𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)))) |
58 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
59 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑢 ∈ (Base‘(EEG‘𝑁))) |
60 | 45 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
61 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁)) |
62 | 49 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
63 | 61, 62 | eleqtrd 2842 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁))) |
64 | 58, 11, 30, 59, 60, 63 | ebtwntg 27331 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn 〈𝑢, 𝑦〉 ↔ 𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦))) |
65 | 51 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (Base‘(EEG‘𝑁))) |
66 | 44 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
67 | 58, 11, 30, 65, 66, 63 | ebtwntg 27331 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn 〈𝑣, 𝑥〉 ↔ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) |
68 | 64, 67 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑎 Btwn 〈𝑢, 𝑦〉 ∧ 𝑎 Btwn 〈𝑣, 𝑥〉) ↔ (𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))) |
69 | 49, 68 | rexeqbidva 3353 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn 〈𝑢, 𝑦〉 ∧ 𝑎 Btwn 〈𝑣, 𝑥〉) ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))) |
70 | 54, 57, 69 | 3imtr3d 292 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))) |
71 | 70 | ralrimivvva 3117 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))) |
72 | 71 | ralrimivva 3116 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))) |
73 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
74 | | elpwi 4547 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
→ 𝑠 ⊆
(Base‘(EEG‘𝑁))) |
75 | 74 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (Base‘(EEG‘𝑁))) |
76 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
77 | 75, 76 | sseqtrrd 3966 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (𝔼‘𝑁)) |
78 | | elpwi 4547 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁))
→ 𝑡 ⊆
(Base‘(EEG‘𝑁))) |
79 | 78 | ad2antll 725 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (Base‘(EEG‘𝑁))) |
80 | 79, 76 | sseqtrrd 3966 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (𝔼‘𝑁)) |
81 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉) → 𝑁 ∈ ℕ) |
82 | | simplrl 773 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉) → 𝑠 ⊆ (𝔼‘𝑁)) |
83 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉) → 𝑡 ⊆ (𝔼‘𝑁)) |
84 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉) → ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉) |
85 | | axcont 27325 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 Btwn 〈𝑥, 𝑦〉) |
86 | 81, 82, 83, 84, 85 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 Btwn 〈𝑥, 𝑦〉) |
87 | 86 | ex 412 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉 → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 Btwn 〈𝑥, 𝑦〉)) |
88 | 73, 77, 80, 87 | syl12anc 833 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉 → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 Btwn 〈𝑥, 𝑦〉)) |
89 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑁 ∈ ℕ) |
90 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑎 ∈ (𝔼‘𝑁)) |
91 | 76 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
92 | 90, 91 | eleqtrd 2842 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑎 ∈ (Base‘(EEG‘𝑁))) |
93 | 79 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁))) |
94 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ 𝑡) |
95 | 93, 94 | sseldd 3926 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
96 | 75 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁))) |
97 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑥 ∈ 𝑠) |
98 | 96, 97 | sseldd 3926 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
99 | 89, 11, 30, 92, 95, 98 | ebtwntg 27331 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → (𝑥 Btwn 〈𝑎, 𝑦〉 ↔ 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦))) |
100 | 99 | 2ralbidva 3123 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉 ↔ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦))) |
101 | 76, 100 | rexeqbidva 3353 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 Btwn 〈𝑎, 𝑦〉 ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦))) |
102 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑁 ∈ ℕ) |
103 | 75 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁))) |
104 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑥 ∈ 𝑠) |
105 | 103, 104 | sseldd 3926 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
106 | 79 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁))) |
107 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ 𝑡) |
108 | 106, 107 | sseldd 3926 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
109 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑏 ∈ (𝔼‘𝑁)) |
110 | 76 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
111 | 109, 110 | eleqtrd 2842 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → 𝑏 ∈ (Base‘(EEG‘𝑁))) |
112 | 102, 11, 30, 105, 108, 111 | ebtwntg 27331 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡)) → (𝑏 Btwn 〈𝑥, 𝑦〉 ↔ 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))) |
113 | 112 | 2ralbidva 3123 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 Btwn 〈𝑥, 𝑦〉 ↔ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))) |
114 | 76, 113 | rexeqbidva 3353 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → (∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 Btwn 〈𝑥, 𝑦〉 ↔ ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))) |
115 | 88, 101, 114 | 3imtr3d 292 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))
∧ 𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))) |
116 | 115 | ralrimivva 3116 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))) |
117 | 40, 72, 116 | 3jca 1126 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))) |
118 | 11, 12, 30 | istrkgb 26797 |
. . . . 5
⊢
((EEG‘𝑁)
∈ TarskiGB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫
(Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫
(Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))))) |
119 | 1, 117, 118 | sylanbrc 582 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
TarskiGB) |
120 | 32, 119 | elind 4132 |
. . 3
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
(TarskiGC ∩ TarskiGB)) |
121 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
122 | 3 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
123 | 121, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
124 | 122, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁)) |
125 | 7 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
126 | 125, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁)) |
127 | | simplr1 1213 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁))) |
128 | 127, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁)) |
129 | | simplr2 1214 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁))) |
130 | 129, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁)) |
131 | | simplr3 1215 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁))) |
132 | 131, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁)) |
133 | | simpr1 1192 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁))) |
134 | 133, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁)) |
135 | | simpr2 1193 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (Base‘(EEG‘𝑁))) |
136 | 135, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (𝔼‘𝑁)) |
137 | | simpr3 1194 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁))) |
138 | 137, 123 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁)) |
139 | | 3anass 1093 |
. . . . . . . . . . . 12
⊢ (((𝑥 ≠ 𝑦 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 𝑏 Btwn 〈𝑎, 𝑐〉) ∧ (〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ∧ (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉)) ↔ ((𝑥 ≠ 𝑦 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 𝑏 Btwn 〈𝑎, 𝑐〉) ∧ ((〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ∧ (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉)))) |
140 | | ax5seg 27287 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥 ≠ 𝑦 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 𝑏 Btwn 〈𝑎, 𝑐〉) ∧ (〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ∧ (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉)) → 〈𝑧, 𝑢〉Cgr〈𝑐, 𝑣〉)) |
141 | 139, 140 | syl5bir 242 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥 ≠ 𝑦 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 𝑏 Btwn 〈𝑎, 𝑐〉) ∧ ((〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ∧ (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉))) → 〈𝑧, 𝑢〉Cgr〈𝑐, 𝑣〉)) |
142 | 121, 124,
126, 128, 130, 132, 134, 136, 138, 141 | syl333anc 1400 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥 ≠ 𝑦 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 𝑏 Btwn 〈𝑎, 𝑐〉) ∧ ((〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ∧ (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉))) → 〈𝑧, 𝑢〉Cgr〈𝑐, 𝑣〉)) |
143 | 121, 11, 30, 122, 127, 125 | ebtwntg 27331 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn 〈𝑥, 𝑧〉 ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))) |
144 | 121, 11, 30, 131, 135, 133 | ebtwntg 27331 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑏 Btwn 〈𝑎, 𝑐〉 ↔ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐))) |
145 | 143, 144 | 3anbi23d 1437 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥 ≠ 𝑦 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 𝑏 Btwn 〈𝑎, 𝑐〉) ↔ (𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)))) |
146 | 121, 11, 12, 122, 125, 131, 133 | ecgrtg 27332 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏))) |
147 | 121, 11, 12, 125, 127, 133, 135 | ecgrtg 27332 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉 ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐))) |
148 | 146, 147 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)))) |
149 | 121, 11, 12, 122, 129, 131, 137 | ecgrtg 27332 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ↔ (𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣))) |
150 | 121, 11, 12, 125, 129, 133, 137 | ecgrtg 27332 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉 ↔ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))) |
151 | 149, 150 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) |
152 | 148, 151 | anbi12d 630 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ∧ (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉)) ↔ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))) |
153 | 145, 152 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥 ≠ 𝑦 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 𝑏 Btwn 〈𝑎, 𝑐〉) ∧ ((〈𝑥, 𝑦〉Cgr〈𝑎, 𝑏〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑏, 𝑐〉) ∧ (〈𝑥, 𝑢〉Cgr〈𝑎, 𝑣〉 ∧ 〈𝑦, 𝑢〉Cgr〈𝑏, 𝑣〉))) ↔ ((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))))) |
154 | 121, 11, 12, 127, 129, 135, 137 | ecgrtg 27332 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (〈𝑧, 𝑢〉Cgr〈𝑐, 𝑣〉 ↔ (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣))) |
155 | 142, 153,
154 | 3imtr3d 292 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣))) |
156 | 155 | ralrimivvva 3117 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑏 ∈
(Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣))) |
157 | 156 | ralrimivvva 3117 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣))) |
158 | 157 | ralrimivva 3116 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣))) |
159 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
160 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁)) |
161 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁)) |
162 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁))) |
163 | 159, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
164 | 162, 163 | eleqtrrd 2843 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁)) |
165 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁))) |
166 | 165, 163 | eleqtrrd 2843 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁)) |
167 | | axsegcon 27276 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑎, 𝑏〉)) |
168 | 159, 160,
161, 164, 166, 167 | syl122anc 1377 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑎, 𝑏〉)) |
169 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
170 | 3 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
171 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁)) |
172 | 163 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
173 | 171, 172 | eleqtrd 2842 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (Base‘(EEG‘𝑁))) |
174 | 7 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
175 | 169, 11, 30, 170, 173, 174 | ebtwntg 27331 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn 〈𝑥, 𝑧〉 ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))) |
176 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁))) |
177 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (Base‘(EEG‘𝑁))) |
178 | 169, 11, 12, 174, 173, 176, 177 | ecgrtg 27332 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (〈𝑦, 𝑧〉Cgr〈𝑎, 𝑏〉 ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))) |
179 | 175, 178 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑎, 𝑏〉) ↔ (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))) |
180 | 163, 179 | rexeqbidva 3353 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝑥, 𝑧〉 ∧ 〈𝑦, 𝑧〉Cgr〈𝑎, 𝑏〉) ↔ ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))) |
181 | 168, 180 | mpbid 231 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈
(Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))) |
182 | 181 | ralrimivva 3116 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → ∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))) |
183 | 182 | ralrimivva 3116 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))) |
184 | 1, 158, 183 | jca32 515 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((EEG‘𝑁) ∈ V
∧ (∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))) |
185 | 11, 12, 30 | istrkgcb 26798 |
. . . . 5
⊢
((EEG‘𝑁)
∈ TarskiGCB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))) |
186 | 184, 185 | sylibr 233 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
TarskiGCB) |
187 | 11, 30 | elntg 27333 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(LineG‘(EEG‘𝑁))
= (𝑥 ∈
(Base‘(EEG‘𝑁)),
𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}) ↦ {𝑧 ∈
(Base‘(EEG‘𝑁))
∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))})) |
188 | 11, 12, 30 | istrkgl 26800 |
. . . . 5
⊢
((EEG‘𝑁)
∈ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ ((EEG‘𝑁) ∈ V ∧
(LineG‘(EEG‘𝑁))
= (𝑥 ∈
(Base‘(EEG‘𝑁)),
𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}) ↦ {𝑧 ∈
(Base‘(EEG‘𝑁))
∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))}))) |
189 | 1, 187, 188 | sylanbrc 582 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) |
190 | 186, 189 | elind 4132 |
. . 3
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
(TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) |
191 | 120, 190 | elind 4132 |
. 2
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB
∩ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))) |
192 | | df-trkg 26795 |
. 2
⊢ TarskiG =
((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB
∩ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) |
193 | 191, 192 | eleqtrrdi 2851 |
1
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
TarskiG) |