MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengtrkg Structured version   Visualization version   GIF version

Theorem eengtrkg 28813
Description: The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengtrkg (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ TarskiG)

Proof of Theorem eengtrkg
Dummy variables π‘Ž 𝑏 𝑐 𝑓 𝑖 𝑝 𝑠 𝑑 𝑒 𝑣 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6905 . . . . . 6 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ V)
2 simpl 481 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑁 ∈ β„•)
3 simprl 769 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
4 eengbas 28808 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
54adantr 479 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
63, 5eleqtrrd 2828 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
7 simprr 771 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
87, 5eleqtrrd 2828 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
9 axcgrrflx 28741 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ ⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘¦, π‘₯⟩)
102, 6, 8, 9syl3anc 1368 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘¦, π‘₯⟩)
11 eqid 2725 . . . . . . . . 9 (Baseβ€˜(EEGβ€˜π‘)) = (Baseβ€˜(EEGβ€˜π‘))
12 eqid 2725 . . . . . . . . 9 (distβ€˜(EEGβ€˜π‘)) = (distβ€˜(EEGβ€˜π‘))
132, 11, 12, 3, 7, 7, 3ecgrtg 28810 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘¦, π‘₯⟩ ↔ (π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑦(distβ€˜(EEGβ€˜π‘))π‘₯)))
1410, 13mpbid 231 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑦(distβ€˜(EEGβ€˜π‘))π‘₯))
1514ralrimivva 3191 . . . . . 6 (𝑁 ∈ β„• β†’ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑦(distβ€˜(EEGβ€˜π‘))π‘₯))
16 simpl 481 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑁 ∈ β„•)
17 simpr1 1191 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
18 simpr2 1192 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
19 simpr3 1193 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))
2016, 11, 12, 17, 18, 19, 19ecgrtg 28810 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘§, π‘§βŸ© ↔ (π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑧(distβ€˜(EEGβ€˜π‘))𝑧)))
2163adantr3 1168 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
2283adantr3 1168 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
234adantr 479 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
2419, 23eleqtrrd 2828 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
25 axcgrid 28743 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ (⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘§, π‘§βŸ© β†’ π‘₯ = 𝑦))
2616, 21, 22, 24, 25syl13anc 1369 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘§, π‘§βŸ© β†’ π‘₯ = 𝑦))
2720, 26sylbird 259 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑧(distβ€˜(EEGβ€˜π‘))𝑧) β†’ π‘₯ = 𝑦))
2827ralrimivvva 3194 . . . . . 6 (𝑁 ∈ β„• β†’ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑧(distβ€˜(EEGβ€˜π‘))𝑧) β†’ π‘₯ = 𝑦))
291, 15, 28jca32 514 . . . . 5 (𝑁 ∈ β„• β†’ ((EEGβ€˜π‘) ∈ V ∧ (βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑦(distβ€˜(EEGβ€˜π‘))π‘₯) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑧(distβ€˜(EEGβ€˜π‘))𝑧) β†’ π‘₯ = 𝑦))))
30 eqid 2725 . . . . . 6 (Itvβ€˜(EEGβ€˜π‘)) = (Itvβ€˜(EEGβ€˜π‘))
3111, 12, 30istrkgc 28274 . . . . 5 ((EEGβ€˜π‘) ∈ TarskiGC ↔ ((EEGβ€˜π‘) ∈ V ∧ (βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑦(distβ€˜(EEGβ€˜π‘))π‘₯) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (𝑧(distβ€˜(EEGβ€˜π‘))𝑧) β†’ π‘₯ = 𝑦))))
3229, 31sylibr 233 . . . 4 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ TarskiGC)
332, 11, 30, 3, 3, 7ebtwntg 28809 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑦 Btwn ⟨π‘₯, π‘₯⟩ ↔ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯)))
34 axbtwnid 28766 . . . . . . . . . . . 12 ((𝑁 ∈ β„• ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ (𝑦 Btwn ⟨π‘₯, π‘₯⟩ β†’ 𝑦 = π‘₯))
352, 8, 6, 34syl3anc 1368 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑦 Btwn ⟨π‘₯, π‘₯⟩ β†’ 𝑦 = π‘₯))
3633, 35sylbird 259 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯) β†’ 𝑦 = π‘₯))
3736imp 405 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯)) β†’ 𝑦 = π‘₯)
3837equcomd 2014 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯)) β†’ π‘₯ = 𝑦)
3938ex 411 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯) β†’ π‘₯ = 𝑦))
4039ralrimivva 3191 . . . . . 6 (𝑁 ∈ β„• β†’ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯) β†’ π‘₯ = 𝑦))
41 simpll 765 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑁 ∈ β„•)
426adantr 479 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
438adantr 479 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
443adantr 479 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
457adantr 479 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
46 simpr1 1191 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4741, 44, 45, 46, 24syl13anc 1369 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
48 simpr2 1192 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4941, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
5048, 49eleqtrrd 2828 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑒 ∈ (π”Όβ€˜π‘))
51 simpr3 1193 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))
5251, 49eleqtrrd 2828 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑣 ∈ (π”Όβ€˜π‘))
53 axpasch 28768 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) ∧ (𝑒 ∈ (π”Όβ€˜π‘) ∧ 𝑣 ∈ (π”Όβ€˜π‘))) β†’ ((𝑒 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑣 Btwn βŸ¨π‘¦, π‘§βŸ©) β†’ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)(π‘Ž Btwn βŸ¨π‘’, π‘¦βŸ© ∧ π‘Ž Btwn βŸ¨π‘£, π‘₯⟩)))
5441, 42, 43, 47, 50, 52, 53syl132anc 1385 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((𝑒 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑣 Btwn βŸ¨π‘¦, π‘§βŸ©) β†’ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)(π‘Ž Btwn βŸ¨π‘’, π‘¦βŸ© ∧ π‘Ž Btwn βŸ¨π‘£, π‘₯⟩)))
5541, 11, 30, 44, 46, 48ebtwntg 28809 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑒 Btwn ⟨π‘₯, π‘§βŸ© ↔ 𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧)))
5641, 11, 30, 45, 46, 51ebtwntg 28809 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑣 Btwn βŸ¨π‘¦, π‘§βŸ© ↔ 𝑣 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧)))
5755, 56anbi12d 630 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((𝑒 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑣 Btwn βŸ¨π‘¦, π‘§βŸ©) ↔ (𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑣 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧))))
58 simplll 773 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ 𝑁 ∈ β„•)
5948adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)))
6045adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
61 simpr 483 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ π‘Ž ∈ (π”Όβ€˜π‘))
6249adantr 479 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
6361, 62eleqtrd 2827 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))
6458, 11, 30, 59, 60, 63ebtwntg 28809 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ (π‘Ž Btwn βŸ¨π‘’, π‘¦βŸ© ↔ π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦)))
6551adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))
6644adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
6758, 11, 30, 65, 66, 63ebtwntg 28809 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ (π‘Ž Btwn βŸ¨π‘£, π‘₯⟩ ↔ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯)))
6864, 67anbi12d 630 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ ((π‘Ž Btwn βŸ¨π‘’, π‘¦βŸ© ∧ π‘Ž Btwn βŸ¨π‘£, π‘₯⟩) ↔ (π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦) ∧ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯))))
6949, 68rexeqbidva 3318 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)(π‘Ž Btwn βŸ¨π‘’, π‘¦βŸ© ∧ π‘Ž Btwn βŸ¨π‘£, π‘₯⟩) ↔ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦) ∧ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯))))
7054, 57, 693imtr3d 292 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑣 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧)) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦) ∧ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯))))
7170ralrimivvva 3194 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑣 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧)) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦) ∧ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯))))
7271ralrimivva 3191 . . . . . 6 (𝑁 ∈ β„• β†’ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑣 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧)) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦) ∧ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯))))
73 simpl 481 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑁 ∈ β„•)
74 elpwi 4603 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) β†’ 𝑠 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
7574ad2antrl 726 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑠 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
764adantr 479 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
7775, 76sseqtrrd 4013 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑠 βŠ† (π”Όβ€˜π‘))
78 elpwi 4603 . . . . . . . . . . 11 (𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) β†’ 𝑑 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
7978ad2antll 727 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑑 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
8079, 76sseqtrrd 4013 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑑 βŠ† (π”Όβ€˜π‘))
81 simpll 765 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝑠 βŠ† (π”Όβ€˜π‘) ∧ 𝑑 βŠ† (π”Όβ€˜π‘))) ∧ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ©) β†’ 𝑁 ∈ β„•)
82 simplrl 775 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝑠 βŠ† (π”Όβ€˜π‘) ∧ 𝑑 βŠ† (π”Όβ€˜π‘))) ∧ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ©) β†’ 𝑠 βŠ† (π”Όβ€˜π‘))
83 simplrr 776 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝑠 βŠ† (π”Όβ€˜π‘) ∧ 𝑑 βŠ† (π”Όβ€˜π‘))) ∧ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ©) β†’ 𝑑 βŠ† (π”Όβ€˜π‘))
84 simpr 483 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝑠 βŠ† (π”Όβ€˜π‘) ∧ 𝑑 βŠ† (π”Όβ€˜π‘))) ∧ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ©) β†’ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ©)
85 axcont 28803 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ (𝑠 βŠ† (π”Όβ€˜π‘) ∧ 𝑑 βŠ† (π”Όβ€˜π‘) ∧ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ©)) β†’ βˆƒπ‘ ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 Btwn ⟨π‘₯, π‘¦βŸ©)
8681, 82, 83, 84, 85syl13anc 1369 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝑠 βŠ† (π”Όβ€˜π‘) ∧ 𝑑 βŠ† (π”Όβ€˜π‘))) ∧ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ©) β†’ βˆƒπ‘ ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 Btwn ⟨π‘₯, π‘¦βŸ©)
8786ex 411 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝑠 βŠ† (π”Όβ€˜π‘) ∧ 𝑑 βŠ† (π”Όβ€˜π‘))) β†’ (βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ© β†’ βˆƒπ‘ ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 Btwn ⟨π‘₯, π‘¦βŸ©))
8873, 77, 80, 87syl12anc 835 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ© β†’ βˆƒπ‘ ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 Btwn ⟨π‘₯, π‘¦βŸ©))
89 simplll 773 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑁 ∈ β„•)
90 simplr 767 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ π‘Ž ∈ (π”Όβ€˜π‘))
9176ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
9290, 91eleqtrd 2827 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))
9379ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑑 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
94 simprr 771 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑦 ∈ 𝑑)
9593, 94sseldd 3973 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
9675ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑠 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
97 simprl 769 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ π‘₯ ∈ 𝑠)
9896, 97sseldd 3973 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
9989, 11, 30, 92, 95, 98ebtwntg 28809 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ (π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ© ↔ π‘₯ ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑦)))
100992ralbidva 3207 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ (βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ© ↔ βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑦)))
10176, 100rexeqbidva 3318 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ Btwn βŸ¨π‘Ž, π‘¦βŸ© ↔ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑦)))
102 simplll 773 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑁 ∈ β„•)
10375ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑠 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
104 simprl 769 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ π‘₯ ∈ 𝑠)
105103, 104sseldd 3973 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
10679ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑑 βŠ† (Baseβ€˜(EEGβ€˜π‘)))
107 simprr 771 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑦 ∈ 𝑑)
108106, 107sseldd 3973 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
109 simplr 767 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑏 ∈ (π”Όβ€˜π‘))
11076ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
111109, 110eleqtrd 2827 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))
112102, 11, 30, 105, 108, 111ebtwntg 28809 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) ∧ (π‘₯ ∈ 𝑠 ∧ 𝑦 ∈ 𝑑)) β†’ (𝑏 Btwn ⟨π‘₯, π‘¦βŸ© ↔ 𝑏 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦)))
1131122ralbidva 3207 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ (βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 Btwn ⟨π‘₯, π‘¦βŸ© ↔ βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦)))
11476, 113rexeqbidva 3318 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βˆƒπ‘ ∈ (π”Όβ€˜π‘)βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 Btwn ⟨π‘₯, π‘¦βŸ© ↔ βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦)))
11588, 101, 1143imtr3d 292 . . . . . . 7 ((𝑁 ∈ β„• ∧ (𝑠 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑑 ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑦) β†’ βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦)))
116115ralrimivva 3191 . . . . . 6 (𝑁 ∈ β„• β†’ βˆ€π‘  ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘‘ ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘))(βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑦) β†’ βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦)))
11740, 72, 1163jca 1125 . . . . 5 (𝑁 ∈ β„• β†’ (βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯) β†’ π‘₯ = 𝑦) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑣 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧)) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦) ∧ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯))) ∧ βˆ€π‘  ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘‘ ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘))(βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑦) β†’ βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦))))
11811, 12, 30istrkgb 28275 . . . . 5 ((EEGβ€˜π‘) ∈ TarskiGB ↔ ((EEGβ€˜π‘) ∈ V ∧ (βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘₯) β†’ π‘₯ = 𝑦) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑣 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧)) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))(π‘Ž ∈ (𝑒(Itvβ€˜(EEGβ€˜π‘))𝑦) ∧ π‘Ž ∈ (𝑣(Itvβ€˜(EEGβ€˜π‘))π‘₯))) ∧ βˆ€π‘  ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘‘ ∈ 𝒫 (Baseβ€˜(EEGβ€˜π‘))(βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑦) β†’ βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦)))))
1191, 117, 118sylanbrc 581 . . . 4 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ TarskiGB)
12032, 119elind 4186 . . 3 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ (TarskiGC ∩ TarskiGB))
121 simplll 773 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑁 ∈ β„•)
1223ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
123121, 4syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
124122, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
1257ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
126125, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
127 simplr1 1212 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))
128127, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
129 simplr2 1213 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)))
130129, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑒 ∈ (π”Όβ€˜π‘))
131 simplr3 1214 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))
132131, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘Ž ∈ (π”Όβ€˜π‘))
133 simpr1 1191 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))
134133, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑏 ∈ (π”Όβ€˜π‘))
135 simpr2 1192 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)))
136135, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑐 ∈ (π”Όβ€˜π‘))
137 simpr3 1193 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))
138137, 123eleqtrrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑣 ∈ (π”Όβ€˜π‘))
139 3anass 1092 . . . . . . . . . . . 12 (((π‘₯ β‰  𝑦 ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑏 Btwn βŸ¨π‘Ž, π‘βŸ©) ∧ (⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ∧ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©)) ↔ ((π‘₯ β‰  𝑦 ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑏 Btwn βŸ¨π‘Ž, π‘βŸ©) ∧ ((⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ∧ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©))))
140 ax5seg 28765 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑒 ∈ (π”Όβ€˜π‘) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (𝑏 ∈ (π”Όβ€˜π‘) ∧ 𝑐 ∈ (π”Όβ€˜π‘) ∧ 𝑣 ∈ (π”Όβ€˜π‘))) β†’ (((π‘₯ β‰  𝑦 ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑏 Btwn βŸ¨π‘Ž, π‘βŸ©) ∧ (⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ∧ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©)) β†’ βŸ¨π‘§, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©))
141139, 140biimtrrid 242 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑒 ∈ (π”Όβ€˜π‘) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ (𝑏 ∈ (π”Όβ€˜π‘) ∧ 𝑐 ∈ (π”Όβ€˜π‘) ∧ 𝑣 ∈ (π”Όβ€˜π‘))) β†’ (((π‘₯ β‰  𝑦 ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑏 Btwn βŸ¨π‘Ž, π‘βŸ©) ∧ ((⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ∧ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©))) β†’ βŸ¨π‘§, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©))
142121, 124, 126, 128, 130, 132, 134, 136, 138, 141syl333anc 1399 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (((π‘₯ β‰  𝑦 ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑏 Btwn βŸ¨π‘Ž, π‘βŸ©) ∧ ((⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ∧ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©))) β†’ βŸ¨π‘§, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©))
143121, 11, 30, 122, 127, 125ebtwntg 28809 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑦 Btwn ⟨π‘₯, π‘§βŸ© ↔ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧)))
144121, 11, 30, 131, 135, 133ebtwntg 28809 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑏 Btwn βŸ¨π‘Ž, π‘βŸ© ↔ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)))
145143, 1443anbi23d 1435 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((π‘₯ β‰  𝑦 ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑏 Btwn βŸ¨π‘Ž, π‘βŸ©) ↔ (π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐))))
146121, 11, 12, 122, 125, 131, 133ecgrtg 28810 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ↔ (π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏)))
147121, 11, 12, 125, 127, 133, 135ecgrtg 28810 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ© ↔ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)))
148146, 147anbi12d 630 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ↔ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐))))
149121, 11, 12, 122, 129, 131, 137ecgrtg 28810 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ↔ (π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣)))
150121, 11, 12, 125, 129, 133, 137ecgrtg 28810 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ© ↔ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))
151149, 150anbi12d 630 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©) ↔ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣))))
152148, 151anbi12d 630 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (((⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ∧ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©)) ↔ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))))
153145, 152anbi12d 630 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (((π‘₯ β‰  𝑦 ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ 𝑏 Btwn βŸ¨π‘Ž, π‘βŸ©) ∧ ((⟨π‘₯, π‘¦βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘, π‘βŸ©) ∧ (⟨π‘₯, π‘’βŸ©CgrβŸ¨π‘Ž, π‘£βŸ© ∧ βŸ¨π‘¦, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ©))) ↔ ((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)) ∧ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣))))))
154121, 11, 12, 127, 129, 135, 137ecgrtg 28810 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βŸ¨π‘§, π‘’βŸ©CgrβŸ¨π‘, π‘£βŸ© ↔ (𝑧(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑐(distβ€˜(EEGβ€˜π‘))𝑣)))
155142, 153, 1543imtr3d 292 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑐 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)) ∧ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))) β†’ (𝑧(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑐(distβ€˜(EEGβ€˜π‘))𝑣)))
156155ralrimivvva 3194 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))(((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)) ∧ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))) β†’ (𝑧(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑐(distβ€˜(EEGβ€˜π‘))𝑣)))
157156ralrimivvva 3194 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))(((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)) ∧ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))) β†’ (𝑧(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑐(distβ€˜(EEGβ€˜π‘))𝑣)))
158157ralrimivva 3191 . . . . . 6 (𝑁 ∈ β„• β†’ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))(((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)) ∧ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))) β†’ (𝑧(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑐(distβ€˜(EEGβ€˜π‘))𝑣)))
159 simpll 765 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑁 ∈ β„•)
1606adantr 479 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
1618adantr 479 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
162 simprl 769 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))
163159, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
164162, 163eleqtrrd 2828 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘Ž ∈ (π”Όβ€˜π‘))
165 simprr 771 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))
166165, 163eleqtrrd 2828 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑏 ∈ (π”Όβ€˜π‘))
167 axsegcon 28754 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (π‘Ž ∈ (π”Όβ€˜π‘) ∧ 𝑏 ∈ (π”Όβ€˜π‘))) β†’ βˆƒπ‘§ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘Ž, π‘βŸ©))
168159, 160, 161, 164, 166, 167syl122anc 1376 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ βˆƒπ‘§ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘Ž, π‘βŸ©))
169 simplll 773 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ 𝑁 ∈ β„•)
1703ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
171 simpr 483 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
172163adantr 479 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
173171, 172eleqtrd 2827 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))
1747ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
175169, 11, 30, 170, 173, 174ebtwntg 28809 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ (𝑦 Btwn ⟨π‘₯, π‘§βŸ© ↔ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧)))
176 simplrl 775 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))
177 simplrr 776 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))
178169, 11, 12, 174, 173, 176, 177ecgrtg 28810 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ (βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘Ž, π‘βŸ© ↔ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏)))
179175, 178anbi12d 630 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ ((𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘Ž, π‘βŸ©) ↔ (𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏))))
180163, 179rexeqbidva 3318 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βˆƒπ‘§ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨π‘₯, π‘§βŸ© ∧ βŸ¨π‘¦, π‘§βŸ©CgrβŸ¨π‘Ž, π‘βŸ©) ↔ βˆƒπ‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏))))
181168, 180mpbid 231 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ βˆƒπ‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏)))
182181ralrimivva 3191 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏)))
183182ralrimivva 3191 . . . . . 6 (𝑁 ∈ β„• β†’ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏)))
1841, 158, 183jca32 514 . . . . 5 (𝑁 ∈ β„• β†’ ((EEGβ€˜π‘) ∈ V ∧ (βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))(((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)) ∧ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))) β†’ (𝑧(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑐(distβ€˜(EEGβ€˜π‘))𝑣)) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏)))))
18511, 12, 30istrkgcb 28276 . . . . 5 ((EEGβ€˜π‘) ∈ TarskiGCB ↔ ((EEGβ€˜π‘) ∈ V ∧ (βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))(((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ 𝑏 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑐)) ∧ (((π‘₯(distβ€˜(EEGβ€˜π‘))𝑦) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑐)) ∧ ((π‘₯(distβ€˜(EEGβ€˜π‘))𝑒) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑣) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑏(distβ€˜(EEGβ€˜π‘))𝑣)))) β†’ (𝑧(distβ€˜(EEGβ€˜π‘))𝑒) = (𝑐(distβ€˜(EEGβ€˜π‘))𝑣)) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ (𝑦(distβ€˜(EEGβ€˜π‘))𝑧) = (π‘Ž(distβ€˜(EEGβ€˜π‘))𝑏)))))
186184, 185sylibr 233 . . . 4 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ TarskiGCB)
18711, 30elntg 28811 . . . . 5 (𝑁 ∈ β„• β†’ (LineGβ€˜(EEGβ€˜π‘)) = (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)), 𝑦 ∈ ((Baseβ€˜(EEGβ€˜π‘)) βˆ– {π‘₯}) ↦ {𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∣ (𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦) ∨ π‘₯ ∈ (𝑧(Itvβ€˜(EEGβ€˜π‘))𝑦) ∨ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧))}))
18811, 12, 30istrkgl 28278 . . . . 5 ((EEGβ€˜π‘) ∈ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})} ↔ ((EEGβ€˜π‘) ∈ V ∧ (LineGβ€˜(EEGβ€˜π‘)) = (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)), 𝑦 ∈ ((Baseβ€˜(EEGβ€˜π‘)) βˆ– {π‘₯}) ↦ {𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∣ (𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑦) ∨ π‘₯ ∈ (𝑧(Itvβ€˜(EEGβ€˜π‘))𝑦) ∨ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑧))})))
1891, 187, 188sylanbrc 581 . . . 4 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})
190186, 189elind 4186 . . 3 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}))
191120, 190elind 4186 . 2 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})))
192 df-trkg 28273 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}))
193191, 192eleqtrrdi 2836 1 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ w3o 1083   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {cab 2702   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419  Vcvv 3463  [wsbc 3768   βˆ– cdif 3936   ∩ cin 3938   βŠ† wss 3939  π’« cpw 4596  {csn 4622  βŸ¨cop 4628   class class class wbr 5141  β€˜cfv 6541  (class class class)co 7414   ∈ cmpo 7416  β„•cn 12240  Basecbs 17177  distcds 17239  TarskiGcstrkg 28247  TarskiGCcstrkgc 28248  TarskiGBcstrkgb 28249  TarskiGCBcstrkgcb 28250  Itvcitv 28253  LineGclng 28254  π”Όcee 28715   Btwn cbtwn 28716  Cgrccgr 28717  EEGceeng 28804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-rp 13005  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13658  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-clim 15462  df-sum 15663  df-struct 17113  df-slot 17148  df-ndx 17160  df-base 17178  df-ds 17252  df-itv 28255  df-lng 28256  df-trkgc 28268  df-trkgb 28269  df-trkgcb 28270  df-trkg 28273  df-ee 28718  df-btwn 28719  df-cgr 28720  df-eeng 28805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator