MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengtrkg Structured version   Visualization version   GIF version

Theorem eengtrkg 28920
Description: The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengtrkg (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)

Proof of Theorem eengtrkg
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6876 . . . . . 6 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ V)
2 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
3 simprl 770 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
4 eengbas 28915 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
54adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
63, 5eleqtrrd 2832 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
7 simprr 772 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
87, 5eleqtrrd 2832 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
9 axcgrrflx 28848 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
102, 6, 8, 9syl3anc 1373 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
11 eqid 2730 . . . . . . . . 9 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
12 eqid 2730 . . . . . . . . 9 (dist‘(EEG‘𝑁)) = (dist‘(EEG‘𝑁))
132, 11, 12, 3, 7, 7, 3ecgrtg 28917 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥)))
1410, 13mpbid 232 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
1514ralrimivva 3181 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
16 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
17 simpr1 1195 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
18 simpr2 1196 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
19 simpr3 1197 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
2016, 11, 12, 17, 18, 19, 19ecgrtg 28917 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧)))
2163adantr3 1172 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
2283adantr3 1172 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
234adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
2419, 23eleqtrrd 2832 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
25 axcgrid 28850 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2616, 21, 22, 24, 25syl13anc 1374 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2720, 26sylbird 260 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
2827ralrimivvva 3184 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
291, 15, 28jca32 515 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
30 eqid 2730 . . . . . 6 (Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁))
3111, 12, 30istrkgc 28388 . . . . 5 ((EEG‘𝑁) ∈ TarskiGC ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
3229, 31sylibr 234 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGC)
332, 11, 30, 3, 3, 7ebtwntg 28916 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)))
34 axbtwnid 28873 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
352, 8, 6, 34syl3anc 1373 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
3633, 35sylbird 260 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑦 = 𝑥))
3736imp 406 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑦 = 𝑥)
3837equcomd 2019 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑥 = 𝑦)
3938ex 412 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
4039ralrimivva 3181 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
41 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
426adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
438adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
443adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
457adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
46 simpr1 1195 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
4741, 44, 45, 46, 24syl13anc 1374 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
48 simpr2 1196 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
4941, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
5048, 49eleqtrrd 2832 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
51 simpr3 1197 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
5251, 49eleqtrrd 2832 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
53 axpasch 28875 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5441, 42, 43, 47, 50, 52, 53syl132anc 1390 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5541, 11, 30, 44, 46, 48ebtwntg 28916 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
5641, 11, 30, 45, 46, 51ebtwntg 28916 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑣 Btwn ⟨𝑦, 𝑧⟩ ↔ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)))
5755, 56anbi12d 632 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) ↔ (𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧))))
58 simplll 774 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
5948adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
6045adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
61 simpr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
6249adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
6361, 62eleqtrd 2831 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
6458, 11, 30, 59, 60, 63ebtwntg 28916 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑢, 𝑦⟩ ↔ 𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦)))
6551adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
6644adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
6758, 11, 30, 65, 66, 63ebtwntg 28916 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑣, 𝑥⟩ ↔ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))
6864, 67anbi12d 632 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ (𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
6949, 68rexeqbidva 3308 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7054, 57, 693imtr3d 293 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7170ralrimivvva 3184 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7271ralrimivva 3181 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
73 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
74 elpwi 4573 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
7574ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
764adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
7775, 76sseqtrrd 3987 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (𝔼‘𝑁))
78 elpwi 4573 . . . . . . . . . . 11 (𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
7978ad2antll 729 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
8079, 76sseqtrrd 3987 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (𝔼‘𝑁))
81 simpll 766 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑁 ∈ ℕ)
82 simplrl 776 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑠 ⊆ (𝔼‘𝑁))
83 simplrr 777 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑡 ⊆ (𝔼‘𝑁))
84 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)
85 axcont 28910 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8681, 82, 83, 84, 85syl13anc 1374 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8786ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
8873, 77, 80, 87syl12anc 836 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
89 simplll 774 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
90 simplr 768 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (𝔼‘𝑁))
9176ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
9290, 91eleqtrd 2831 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
9379ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
94 simprr 772 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
9593, 94sseldd 3950 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
9675ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
97 simprl 770 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
9896, 97sseldd 3950 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
9989, 11, 30, 92, 95, 98ebtwntg 28916 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
100992ralbidva 3200 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
10176, 100rexeqbidva 3308 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
102 simplll 774 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
10375ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
104 simprl 770 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
105103, 104sseldd 3950 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
10679ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
107 simprr 772 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
108106, 107sseldd 3950 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
109 simplr 768 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (𝔼‘𝑁))
11076ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
111109, 110eleqtrd 2831 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
112102, 11, 30, 105, 108, 111ebtwntg 28916 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
1131122ralbidva 3200 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11476, 113rexeqbidva 3308 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11588, 101, 1143imtr3d 293 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
116115ralrimivva 3181 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11740, 72, 1163jca 1128 . . . . 5 (𝑁 ∈ ℕ → (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))))
11811, 12, 30istrkgb 28389 . . . . 5 ((EEG‘𝑁) ∈ TarskiGB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))))
1191, 117, 118sylanbrc 583 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGB)
12032, 119elind 4166 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGC ∩ TarskiGB))
121 simplll 774 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1223ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
123121, 4syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
124122, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1257ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
126125, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
127 simplr1 1216 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
128127, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
129 simplr2 1217 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
130129, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
131 simplr3 1218 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
132131, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
133 simpr1 1195 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
134133, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
135 simpr2 1196 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (Base‘(EEG‘𝑁)))
136135, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (𝔼‘𝑁))
137 simpr3 1197 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
138137, 123eleqtrrd 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
139 3anass 1094 . . . . . . . . . . . 12 (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))))
140 ax5seg 28872 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
141139, 140biimtrrid 243 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
142121, 124, 126, 128, 130, 132, 134, 136, 138, 141syl333anc 1404 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
143121, 11, 30, 122, 127, 125ebtwntg 28916 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
144121, 11, 30, 131, 135, 133ebtwntg 28916 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)))
145143, 1443anbi23d 1441 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ↔ (𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐))))
146121, 11, 12, 122, 125, 131, 133ecgrtg 28917 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
147121, 11, 12, 125, 127, 133, 135ecgrtg 28917 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)))
148146, 147anbi12d 632 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐))))
149121, 11, 12, 122, 129, 131, 137ecgrtg 28917 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣)))
150121, 11, 12, 125, 129, 133, 137ecgrtg 28917 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))
151149, 150anbi12d 632 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))
152148, 151anbi12d 632 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))))
153145, 152anbi12d 632 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) ↔ ((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))))
154121, 11, 12, 127, 129, 135, 137ecgrtg 28917 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩ ↔ (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
155142, 153, 1543imtr3d 293 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
156155ralrimivvva 3184 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
157156ralrimivvva 3184 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
158157ralrimivva 3181 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
159 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1606adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1618adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
162 simprl 770 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
163159, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
164162, 163eleqtrrd 2832 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
165 simprr 772 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
166165, 163eleqtrrd 2832 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
167 axsegcon 28861 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
168159, 160, 161, 164, 166, 167syl122anc 1381 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
169 simplll 774 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
1703ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
171 simpr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁))
172163adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
173171, 172eleqtrd 2831 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
1747ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
175169, 11, 30, 170, 173, 174ebtwntg 28916 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
176 simplrl 776 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
177 simplrr 777 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
178169, 11, 12, 174, 173, 176, 177ecgrtg 28917 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
179175, 178anbi12d 632 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
180163, 179rexeqbidva 3308 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
181168, 180mpbid 232 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
182181ralrimivva 3181 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
183182ralrimivva 3181 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
1841, 158, 183jca32 515 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
18511, 12, 30istrkgcb 28390 . . . . 5 ((EEG‘𝑁) ∈ TarskiGCB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
186184, 185sylibr 234 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGCB)
18711, 30elntg 28918 . . . . 5 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))}))
18811, 12, 30istrkgl 28392 . . . . 5 ((EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ ((EEG‘𝑁) ∈ V ∧ (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))})))
1891, 187, 188sylanbrc 583 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
190186, 189elind 4166 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
191120, 190elind 4166 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
192 df-trkg 28387 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
193191, 192eleqtrrdi 2840 1 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  [wsbc 3756  cdif 3914  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  cmpo 7392  cn 12193  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  TarskiGCcstrkgc 28362  TarskiGBcstrkgb 28363  TarskiGCBcstrkgcb 28364  Itvcitv 28367  LineGclng 28368  𝔼cee 28822   Btwn cbtwn 28823  Cgrccgr 28824  EEGceeng 28911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-ds 17249  df-itv 28369  df-lng 28370  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-ee 28825  df-btwn 28826  df-cgr 28827  df-eeng 28912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator