MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgbtwnid Structured version   Visualization version   GIF version

Theorem axtgbtwnid 26827
Description: Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgbtwnid.1 (𝜑𝑋𝑃)
axtgbtwnid.2 (𝜑𝑌𝑃)
axtgbtwnid.3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
axtgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem axtgbtwnid
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑎 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 26814 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4162 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss2 4163 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
42, 3sstri 3930 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
51, 4eqsstri 3955 . . . 4 TarskiG ⊆ TarskiGB
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3919 . . 3 (𝜑𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgb 26816 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1211simprbi 497 . . . 4 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1312simp1d 1141 . . 3 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
15 axtgbtwnid.3 . 2 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
16 axtgbtwnid.1 . . 3 (𝜑𝑋𝑃)
17 axtgbtwnid.2 . . 3 (𝜑𝑌𝑃)
18 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1918, 18oveq12d 7293 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐼𝑥) = (𝑋𝐼𝑋))
2019eleq2d 2824 . . . . 5 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑥) ↔ 𝑦 ∈ (𝑋𝐼𝑋)))
21 eqeq1 2742 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2220, 21imbi12d 345 . . . 4 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ (𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦)))
23 eleq1 2826 . . . . 5 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑋)))
24 eqeq2 2750 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2523, 24imbi12d 345 . . . 4 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦) ↔ (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2622, 25rspc2v 3570 . . 3 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2716, 17, 26syl2anc 584 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2814, 15, 27mp2d 49 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  [wsbc 3716  cdif 3884  cin 3886  𝒫 cpw 4533  {csn 4561  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  TarskiGCcstrkgc 26789  TarskiGBcstrkgb 26790  TarskiGCBcstrkgcb 26791  Itvcitv 26794  LineGclng 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-trkgb 26810  df-trkg 26814
This theorem is referenced by:  tgbtwncom  26849  tgbtwnne  26851  tgbtwnswapid  26853  tgbtwnintr  26854  tgifscgr  26869  tgidinside  26932  tgbtwnconn1lem3  26935  coltr3  27009  mirinv  27027  miriso  27031  krippenlem  27051  midexlem  27053  colperpexlem3  27093  oppne3  27104  oppnid  27107  opphllem1  27108  hlpasch  27117  midid  27142  lmiisolem  27157  f1otrg  27232
  Copyright terms: Public domain W3C validator