MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgbtwnid Structured version   Visualization version   GIF version

Theorem axtgbtwnid 28400
Description: Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgbtwnid.1 (𝜑𝑋𝑃)
axtgbtwnid.2 (𝜑𝑌𝑃)
axtgbtwnid.3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
axtgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem axtgbtwnid
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑎 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28387 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4203 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss2 4204 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
42, 3sstri 3959 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
51, 4eqsstri 3996 . . . 4 TarskiG ⊆ TarskiGB
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3947 . . 3 (𝜑𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgb 28389 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1211simprbi 496 . . . 4 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1312simp1d 1142 . . 3 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
15 axtgbtwnid.3 . 2 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
16 axtgbtwnid.1 . . 3 (𝜑𝑋𝑃)
17 axtgbtwnid.2 . . 3 (𝜑𝑌𝑃)
18 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1918, 18oveq12d 7408 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐼𝑥) = (𝑋𝐼𝑋))
2019eleq2d 2815 . . . . 5 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑥) ↔ 𝑦 ∈ (𝑋𝐼𝑋)))
21 eqeq1 2734 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2220, 21imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ (𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦)))
23 eleq1 2817 . . . . 5 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑋)))
24 eqeq2 2742 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2523, 24imbi12d 344 . . . 4 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦) ↔ (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2622, 25rspc2v 3602 . . 3 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2716, 17, 26syl2anc 584 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2814, 15, 27mp2d 49 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  [wsbc 3756  cdif 3914  cin 3916  𝒫 cpw 4566  {csn 4592  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  TarskiGCcstrkgc 28362  TarskiGBcstrkgb 28363  TarskiGCBcstrkgcb 28364  Itvcitv 28367  LineGclng 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-trkgb 28383  df-trkg 28387
This theorem is referenced by:  tgbtwncom  28422  tgbtwnne  28424  tgbtwnswapid  28426  tgbtwnintr  28427  tgifscgr  28442  tgidinside  28505  tgbtwnconn1lem3  28508  coltr3  28582  mirinv  28600  miriso  28604  krippenlem  28624  midexlem  28626  colperpexlem3  28666  oppne3  28677  oppnid  28680  opphllem1  28681  hlpasch  28690  midid  28715  lmiisolem  28730  f1otrg  28805
  Copyright terms: Public domain W3C validator