MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgbtwnid Structured version   Visualization version   GIF version

Theorem axtgbtwnid 27985
Description: Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Baseβ€˜πΊ)
axtrkg.d βˆ’ = (distβ€˜πΊ)
axtrkg.i 𝐼 = (Itvβ€˜πΊ)
axtrkg.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
axtgbtwnid.1 (πœ‘ β†’ 𝑋 ∈ 𝑃)
axtgbtwnid.2 (πœ‘ β†’ π‘Œ ∈ 𝑃)
axtgbtwnid.3 (πœ‘ β†’ π‘Œ ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
axtgbtwnid (πœ‘ β†’ 𝑋 = π‘Œ)

Proof of Theorem axtgbtwnid
Dummy variables 𝑓 𝑖 𝑝 π‘₯ 𝑦 𝑧 π‘Ž 𝑏 𝑣 𝑠 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 27972 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}))
2 inss1 4228 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† (TarskiGC ∩ TarskiGB)
3 inss2 4229 . . . . . 6 (TarskiGC ∩ TarskiGB) βŠ† TarskiGB
42, 3sstri 3991 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})})) βŠ† TarskiGB
51, 4eqsstri 4016 . . . 4 TarskiG βŠ† TarskiGB
6 axtrkg.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
75, 6sselid 3980 . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Baseβ€˜πΊ)
9 axtrkg.d . . . . . 6 βˆ’ = (distβ€˜πΊ)
10 axtrkg.i . . . . . 6 𝐼 = (Itvβ€˜πΊ)
118, 9, 10istrkgb 27974 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) ∧ βˆ€π‘  ∈ 𝒫 π‘ƒβˆ€π‘‘ ∈ 𝒫 𝑃(βˆƒπ‘Ž ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘ŽπΌπ‘¦) β†’ βˆƒπ‘ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯𝐼𝑦)))))
1211simprbi 496 . . . 4 (𝐺 ∈ TarskiGB β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((𝑒 ∈ (π‘₯𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑃 (π‘Ž ∈ (𝑒𝐼𝑦) ∧ π‘Ž ∈ (𝑣𝐼π‘₯))) ∧ βˆ€π‘  ∈ 𝒫 π‘ƒβˆ€π‘‘ ∈ 𝒫 𝑃(βˆƒπ‘Ž ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘ŽπΌπ‘¦) β†’ βˆƒπ‘ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯𝐼𝑦))))
1312simp1d 1141 . . 3 (𝐺 ∈ TarskiGB β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦))
147, 13syl 17 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦))
15 axtgbtwnid.3 . 2 (πœ‘ β†’ π‘Œ ∈ (𝑋𝐼𝑋))
16 axtgbtwnid.1 . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑃)
17 axtgbtwnid.2 . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑃)
18 id 22 . . . . . . 7 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
1918, 18oveq12d 7430 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯𝐼π‘₯) = (𝑋𝐼𝑋))
2019eleq2d 2818 . . . . 5 (π‘₯ = 𝑋 β†’ (𝑦 ∈ (π‘₯𝐼π‘₯) ↔ 𝑦 ∈ (𝑋𝐼𝑋)))
21 eqeq1 2735 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ = 𝑦 ↔ 𝑋 = 𝑦))
2220, 21imbi12d 344 . . . 4 (π‘₯ = 𝑋 β†’ ((𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦) ↔ (𝑦 ∈ (𝑋𝐼𝑋) β†’ 𝑋 = 𝑦)))
23 eleq1 2820 . . . . 5 (𝑦 = π‘Œ β†’ (𝑦 ∈ (𝑋𝐼𝑋) ↔ π‘Œ ∈ (𝑋𝐼𝑋)))
24 eqeq2 2743 . . . . 5 (𝑦 = π‘Œ β†’ (𝑋 = 𝑦 ↔ 𝑋 = π‘Œ))
2523, 24imbi12d 344 . . . 4 (𝑦 = π‘Œ β†’ ((𝑦 ∈ (𝑋𝐼𝑋) β†’ 𝑋 = 𝑦) ↔ (π‘Œ ∈ (𝑋𝐼𝑋) β†’ 𝑋 = π‘Œ)))
2622, 25rspc2v 3622 . . 3 ((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃) β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦) β†’ (π‘Œ ∈ (𝑋𝐼𝑋) β†’ 𝑋 = π‘Œ)))
2716, 17, 26syl2anc 583 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 (𝑦 ∈ (π‘₯𝐼π‘₯) β†’ π‘₯ = 𝑦) β†’ (π‘Œ ∈ (𝑋𝐼𝑋) β†’ 𝑋 = π‘Œ)))
2814, 15, 27mp2d 49 1 (πœ‘ β†’ 𝑋 = π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ w3o 1085   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  {cab 2708  βˆ€wral 3060  βˆƒwrex 3069  {crab 3431  Vcvv 3473  [wsbc 3777   βˆ– cdif 3945   ∩ cin 3947  π’« cpw 4602  {csn 4628  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  TarskiGCcstrkgc 27947  TarskiGBcstrkgb 27948  TarskiGCBcstrkgcb 27949  Itvcitv 27952  LineGclng 27953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-trkgb 27968  df-trkg 27972
This theorem is referenced by:  tgbtwncom  28007  tgbtwnne  28009  tgbtwnswapid  28011  tgbtwnintr  28012  tgifscgr  28027  tgidinside  28090  tgbtwnconn1lem3  28093  coltr3  28167  mirinv  28185  miriso  28189  krippenlem  28209  midexlem  28211  colperpexlem3  28251  oppne3  28262  oppnid  28265  opphllem1  28266  hlpasch  28275  midid  28300  lmiisolem  28315  f1otrg  28390
  Copyright terms: Public domain W3C validator