MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgbtwnid Structured version   Visualization version   GIF version

Theorem axtgbtwnid 26260
Description: Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgbtwnid.1 (𝜑𝑋𝑃)
axtgbtwnid.2 (𝜑𝑌𝑃)
axtgbtwnid.3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
axtgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem axtgbtwnid
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑎 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 26247 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 4155 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss2 4156 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
42, 3sstri 3924 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
51, 4eqsstri 3949 . . . 4 TarskiG ⊆ TarskiGB
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sseldi 3913 . . 3 (𝜑𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgb 26249 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1211simprbi 500 . . . 4 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1312simp1d 1139 . . 3 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
15 axtgbtwnid.3 . 2 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
16 axtgbtwnid.1 . . 3 (𝜑𝑋𝑃)
17 axtgbtwnid.2 . . 3 (𝜑𝑌𝑃)
18 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1918, 18oveq12d 7153 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐼𝑥) = (𝑋𝐼𝑋))
2019eleq2d 2875 . . . . 5 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑥) ↔ 𝑦 ∈ (𝑋𝐼𝑋)))
21 eqeq1 2802 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2220, 21imbi12d 348 . . . 4 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ (𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦)))
23 eleq1 2877 . . . . 5 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑋)))
24 eqeq2 2810 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2523, 24imbi12d 348 . . . 4 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦) ↔ (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2622, 25rspc2v 3581 . . 3 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2716, 17, 26syl2anc 587 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2814, 15, 27mp2d 49 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  [wsbc 3720  cdif 3878  cin 3880  𝒫 cpw 4497  {csn 4525  cfv 6324  (class class class)co 7135  cmpo 7137  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  TarskiGCcstrkgc 26225  TarskiGBcstrkgb 26226  TarskiGCBcstrkgcb 26227  Itvcitv 26230  LineGclng 26231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-trkgb 26243  df-trkg 26247
This theorem is referenced by:  tgbtwncom  26282  tgbtwnne  26284  tgbtwnswapid  26286  tgbtwnintr  26287  tgifscgr  26302  tgidinside  26365  tgbtwnconn1lem3  26368  coltr3  26442  mirinv  26460  miriso  26464  krippenlem  26484  midexlem  26486  colperpexlem3  26526  oppne3  26537  oppnid  26540  opphllem1  26541  hlpasch  26550  midid  26575  lmiisolem  26590  f1otrg  26665
  Copyright terms: Public domain W3C validator