Step | Hyp | Ref
| Expression |
1 | | df-trkg 26814 |
. . . . 5
⊢ TarskiG =
((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB
∩ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) |
2 | | inss1 4162 |
. . . . . 6
⊢
((TarskiGC ∩ TarskiGB) ∩
(TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩
TarskiGB) |
3 | | inss2 4163 |
. . . . . 6
⊢
(TarskiGC ∩ TarskiGB) ⊆
TarskiGB |
4 | 2, 3 | sstri 3930 |
. . . . 5
⊢
((TarskiGC ∩ TarskiGB) ∩
(TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆
TarskiGB |
5 | 1, 4 | eqsstri 3955 |
. . . 4
⊢ TarskiG
⊆ TarskiGB |
6 | | axtrkg.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
7 | 5, 6 | sselid 3919 |
. . 3
⊢ (𝜑 → 𝐺 ∈
TarskiGB) |
8 | | axtrkg.p |
. . . . . 6
⊢ 𝑃 = (Base‘𝐺) |
9 | | axtrkg.d |
. . . . . 6
⊢ − =
(dist‘𝐺) |
10 | | axtrkg.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
11 | 8, 9, 10 | istrkgb 26816 |
. . . . 5
⊢ (𝐺 ∈ TarskiGB
↔ (𝐺 ∈ V ∧
(∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎 ∈ 𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃∀𝑡 ∈ 𝒫 𝑃(∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝐼𝑦))))) |
12 | 11 | simprbi 497 |
. . . 4
⊢ (𝐺 ∈ TarskiGB
→ (∀𝑥 ∈
𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎 ∈ 𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃∀𝑡 ∈ 𝒫 𝑃(∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝐼𝑦)))) |
13 | 12 | simp1d 1141 |
. . 3
⊢ (𝐺 ∈ TarskiGB
→ ∀𝑥 ∈
𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦)) |
14 | 7, 13 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦)) |
15 | | axtgbtwnid.3 |
. 2
⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) |
16 | | axtgbtwnid.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
17 | | axtgbtwnid.2 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
18 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
19 | 18, 18 | oveq12d 7293 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑥) = (𝑋𝐼𝑋)) |
20 | 19 | eleq2d 2824 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑥) ↔ 𝑦 ∈ (𝑋𝐼𝑋))) |
21 | | eqeq1 2742 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) |
22 | 20, 21 | imbi12d 345 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ (𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦))) |
23 | | eleq1 2826 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑋))) |
24 | | eqeq2 2750 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) |
25 | 23, 24 | imbi12d 345 |
. . . 4
⊢ (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦) ↔ (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌))) |
26 | 22, 25 | rspc2v 3570 |
. . 3
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌))) |
27 | 16, 17, 26 | syl2anc 584 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌))) |
28 | 14, 15, 27 | mp2d 49 |
1
⊢ (𝜑 → 𝑋 = 𝑌) |