MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtg5seg Structured version   Visualization version   GIF version

Theorem axtg5seg 28463
Description: Five segments axiom, Axiom A5 of [Schwabhauser] p. 11. Take two triangles 𝑋𝑍𝑈 and 𝐴𝐶𝑉, a point 𝑌 on 𝑋𝑍, and a point 𝐵 on 𝐴𝐶. If all corresponding line segments except for 𝑍𝑈 and 𝐶𝑉 are congruent ( i.e., 𝑋𝑌 𝐴𝐵, 𝑌𝑍 𝐵𝐶, 𝑋𝑈 𝐴𝑉, and 𝑌𝑈 𝐵𝑉), then 𝑍𝑈 and 𝐶𝑉 are also congruent. As noted in Axiom 5 of [Tarski1999] p. 178, "this axiom is similar in character to the well-known theorems of Euclidean geometry that allow one to conclude, from hypotheses about the congruence of certain corresponding sides and angles in two triangles, the congruence of other corresponding sides and angles." (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtg5seg.1 (𝜑𝑋𝑃)
axtg5seg.2 (𝜑𝑌𝑃)
axtg5seg.3 (𝜑𝑍𝑃)
axtg5seg.4 (𝜑𝐴𝑃)
axtg5seg.5 (𝜑𝐵𝑃)
axtg5seg.6 (𝜑𝐶𝑃)
axtg5seg.7 (𝜑𝑈𝑃)
axtg5seg.8 (𝜑𝑉𝑃)
axtg5seg.9 (𝜑𝑋𝑌)
axtg5seg.10 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
axtg5seg.11 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
axtg5seg.12 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
axtg5seg.13 (𝜑 → (𝑌 𝑍) = (𝐵 𝐶))
axtg5seg.14 (𝜑 → (𝑋 𝑈) = (𝐴 𝑉))
axtg5seg.15 (𝜑 → (𝑌 𝑈) = (𝐵 𝑉))
Assertion
Ref Expression
axtg5seg (𝜑 → (𝑍 𝑈) = (𝐶 𝑉))

Proof of Theorem axtg5seg
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28451 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss2 4187 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
3 inss1 4186 . . . . . . . 8 (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆ TarskiGCB
42, 3sstri 3940 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGCB
51, 4eqsstri 3977 . . . . . 6 TarskiG ⊆ TarskiGCB
6 axtrkg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3928 . . . . 5 (𝜑𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . . . 8 = (dist‘𝐺)
10 axtrkg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgcb 28454 . . . . . . 7 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
1211simprbi 496 . . . . . 6 (𝐺 ∈ TarskiGCB → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
1312simpld 494 . . . . 5 (𝐺 ∈ TarskiGCB → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)))
147, 13syl 17 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)))
15 axtg5seg.1 . . . . 5 (𝜑𝑋𝑃)
16 axtg5seg.2 . . . . 5 (𝜑𝑌𝑃)
17 axtg5seg.3 . . . . 5 (𝜑𝑍𝑃)
18 neeq1 2991 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
19 oveq1 7362 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2019eleq2d 2819 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
2118, 203anbi12d 1439 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
22 oveq1 7362 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
2322eqeq1d 2735 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑎 𝑏) ↔ (𝑋 𝑦) = (𝑎 𝑏)))
2423anbi1d 631 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐))))
25 oveq1 7362 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 𝑢) = (𝑋 𝑢))
2625eqeq1d 2735 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 𝑢) = (𝑎 𝑣) ↔ (𝑋 𝑢) = (𝑎 𝑣)))
2726anbi1d 631 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))))
2824, 27anbi12d 632 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))))
2921, 28anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))))))
3029imbi1d 341 . . . . . . . . 9 (𝑥 = 𝑋 → ((((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
3130ralbidv 3156 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
32312ralbidv 3197 . . . . . . 7 (𝑥 = 𝑋 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
33322ralbidv 3197 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
34 neeq2 2992 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝑦𝑋𝑌))
35 eleq1 2821 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
3634, 353anbi12d 1439 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
37 oveq2 7363 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
3837eqeq1d 2735 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑎 𝑏) ↔ (𝑋 𝑌) = (𝑎 𝑏)))
39 oveq1 7362 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
4039eqeq1d 2735 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑦 𝑧) = (𝑏 𝑐) ↔ (𝑌 𝑧) = (𝑏 𝑐)))
4138, 40anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐))))
42 oveq1 7362 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑦 𝑢) = (𝑌 𝑢))
4342eqeq1d 2735 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑦 𝑢) = (𝑏 𝑣) ↔ (𝑌 𝑢) = (𝑏 𝑣)))
4443anbi2d 630 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))
4541, 44anbi12d 632 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))))
4636, 45anbi12d 632 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))))
4746imbi1d 341 . . . . . . . . 9 (𝑦 = 𝑌 → ((((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
4847ralbidv 3156 . . . . . . . 8 (𝑦 = 𝑌 → (∀𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
49482ralbidv 3197 . . . . . . 7 (𝑦 = 𝑌 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
50492ralbidv 3197 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
51 oveq2 7363 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
5251eleq2d 2819 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
53523anbi2d 1443 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
54 oveq2 7363 . . . . . . . . . . . . . 14 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
5554eqeq1d 2735 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → ((𝑌 𝑧) = (𝑏 𝑐) ↔ (𝑌 𝑍) = (𝑏 𝑐)))
5655anbi2d 630 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐))))
5756anbi1d 631 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))))
5853, 57anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑍 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))))
59 oveq1 7362 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑢) = (𝑍 𝑢))
6059eqeq1d 2735 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 𝑢) = (𝑐 𝑣) ↔ (𝑍 𝑢) = (𝑐 𝑣)))
6158, 60imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑍 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6261ralbidv 3156 . . . . . . . 8 (𝑧 = 𝑍 → (∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
63622ralbidv 3197 . . . . . . 7 (𝑧 = 𝑍 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
64632ralbidv 3197 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6533, 50, 64rspc3v 3589 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6615, 16, 17, 65syl3anc 1373 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6714, 66mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)))
68 axtg5seg.7 . . . 4 (𝜑𝑈𝑃)
69 axtg5seg.4 . . . 4 (𝜑𝐴𝑃)
70 axtg5seg.5 . . . 4 (𝜑𝐵𝑃)
71 oveq2 7363 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑋 𝑢) = (𝑋 𝑈))
7271eqeq1d 2735 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑋 𝑢) = (𝑎 𝑣) ↔ (𝑋 𝑈) = (𝑎 𝑣)))
73 oveq2 7363 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑌 𝑢) = (𝑌 𝑈))
7473eqeq1d 2735 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑌 𝑢) = (𝑏 𝑣) ↔ (𝑌 𝑈) = (𝑏 𝑣)))
7572, 74anbi12d 632 . . . . . . . . 9 (𝑢 = 𝑈 → (((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))
7675anbi2d 630 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))))
7776anbi2d 630 . . . . . . 7 (𝑢 = 𝑈 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))))
78 oveq2 7363 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 𝑢) = (𝑍 𝑈))
7978eqeq1d 2735 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 𝑢) = (𝑐 𝑣) ↔ (𝑍 𝑈) = (𝑐 𝑣)))
8077, 79imbi12d 344 . . . . . 6 (𝑢 = 𝑈 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
81802ralbidv 3197 . . . . 5 (𝑢 = 𝑈 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
82 oveq1 7362 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝐼𝑐) = (𝐴𝐼𝑐))
8382eleq2d 2819 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑏 ∈ (𝑎𝐼𝑐) ↔ 𝑏 ∈ (𝐴𝐼𝑐)))
84833anbi3d 1444 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐))))
85 oveq1 7362 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
8685eqeq2d 2744 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑋 𝑌) = (𝑎 𝑏) ↔ (𝑋 𝑌) = (𝐴 𝑏)))
8786anbi1d 631 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐))))
88 oveq1 7362 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 𝑣) = (𝐴 𝑣))
8988eqeq2d 2744 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑋 𝑈) = (𝑎 𝑣) ↔ (𝑋 𝑈) = (𝐴 𝑣)))
9089anbi1d 631 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))
9187, 90anbi12d 632 . . . . . . . 8 (𝑎 = 𝐴 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))))
9284, 91anbi12d 632 . . . . . . 7 (𝑎 = 𝐴 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))))
9392imbi1d 341 . . . . . 6 (𝑎 = 𝐴 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
94932ralbidv 3197 . . . . 5 (𝑎 = 𝐴 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
95 eleq1 2821 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝑐)))
96953anbi3d 1444 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐))))
97 oveq2 7363 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
9897eqeq2d 2744 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑋 𝑌) = (𝐴 𝑏) ↔ (𝑋 𝑌) = (𝐴 𝐵)))
99 oveq1 7362 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 𝑐) = (𝐵 𝑐))
10099eqeq2d 2744 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑌 𝑍) = (𝑏 𝑐) ↔ (𝑌 𝑍) = (𝐵 𝑐)))
10198, 100anbi12d 632 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐))))
102 oveq1 7362 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 𝑣) = (𝐵 𝑣))
103102eqeq2d 2744 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑌 𝑈) = (𝑏 𝑣) ↔ (𝑌 𝑈) = (𝐵 𝑣)))
104103anbi2d 630 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))
105101, 104anbi12d 632 . . . . . . . 8 (𝑏 = 𝐵 → ((((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))))
10696, 105anbi12d 632 . . . . . . 7 (𝑏 = 𝐵 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))))
107106imbi1d 341 . . . . . 6 (𝑏 = 𝐵 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
1081072ralbidv 3197 . . . . 5 (𝑏 = 𝐵 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
10981, 94, 108rspc3v 3589 . . . 4 ((𝑈𝑃𝐴𝑃𝐵𝑃) → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
11068, 69, 70, 109syl3anc 1373 . . 3 (𝜑 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
11167, 110mpd 15 . 2 (𝜑 → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)))
112 axtg5seg.9 . . . 4 (𝜑𝑋𝑌)
113 axtg5seg.10 . . . 4 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
114 axtg5seg.11 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
115112, 113, 1143jca 1128 . . 3 (𝜑 → (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)))
116 axtg5seg.12 . . . 4 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
117 axtg5seg.13 . . . 4 (𝜑 → (𝑌 𝑍) = (𝐵 𝐶))
118116, 117jca 511 . . 3 (𝜑 → ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)))
119 axtg5seg.14 . . . 4 (𝜑 → (𝑋 𝑈) = (𝐴 𝑉))
120 axtg5seg.15 . . . 4 (𝜑 → (𝑌 𝑈) = (𝐵 𝑉))
121119, 120jca 511 . . 3 (𝜑 → ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))
122115, 118, 121jca32 515 . 2 (𝜑 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))))
123 axtg5seg.6 . . 3 (𝜑𝐶𝑃)
124 axtg5seg.8 . . 3 (𝜑𝑉𝑃)
125 oveq2 7363 . . . . . . . 8 (𝑐 = 𝐶 → (𝐴𝐼𝑐) = (𝐴𝐼𝐶))
126125eleq2d 2819 . . . . . . 7 (𝑐 = 𝐶 → (𝐵 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝐶)))
1271263anbi3d 1444 . . . . . 6 (𝑐 = 𝐶 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶))))
128 oveq2 7363 . . . . . . . . 9 (𝑐 = 𝐶 → (𝐵 𝑐) = (𝐵 𝐶))
129128eqeq2d 2744 . . . . . . . 8 (𝑐 = 𝐶 → ((𝑌 𝑍) = (𝐵 𝑐) ↔ (𝑌 𝑍) = (𝐵 𝐶)))
130129anbi2d 630 . . . . . . 7 (𝑐 = 𝐶 → (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶))))
131130anbi1d 631 . . . . . 6 (𝑐 = 𝐶 → ((((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))))
132127, 131anbi12d 632 . . . . 5 (𝑐 = 𝐶 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))))
133 oveq1 7362 . . . . . 6 (𝑐 = 𝐶 → (𝑐 𝑣) = (𝐶 𝑣))
134133eqeq2d 2744 . . . . 5 (𝑐 = 𝐶 → ((𝑍 𝑈) = (𝑐 𝑣) ↔ (𝑍 𝑈) = (𝐶 𝑣)))
135132, 134imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝐶 𝑣))))
136 oveq2 7363 . . . . . . . . 9 (𝑣 = 𝑉 → (𝐴 𝑣) = (𝐴 𝑉))
137136eqeq2d 2744 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑋 𝑈) = (𝐴 𝑣) ↔ (𝑋 𝑈) = (𝐴 𝑉)))
138 oveq2 7363 . . . . . . . . 9 (𝑣 = 𝑉 → (𝐵 𝑣) = (𝐵 𝑉))
139138eqeq2d 2744 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑌 𝑈) = (𝐵 𝑣) ↔ (𝑌 𝑈) = (𝐵 𝑉)))
140137, 139anbi12d 632 . . . . . . 7 (𝑣 = 𝑉 → (((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉))))
141140anbi2d 630 . . . . . 6 (𝑣 = 𝑉 → ((((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))))
142141anbi2d 630 . . . . 5 (𝑣 = 𝑉 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉))))))
143 oveq2 7363 . . . . . 6 (𝑣 = 𝑉 → (𝐶 𝑣) = (𝐶 𝑉))
144143eqeq2d 2744 . . . . 5 (𝑣 = 𝑉 → ((𝑍 𝑈) = (𝐶 𝑣) ↔ (𝑍 𝑈) = (𝐶 𝑉)))
145142, 144imbi12d 344 . . . 4 (𝑣 = 𝑉 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝐶 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
146135, 145rspc2v 3584 . . 3 ((𝐶𝑃𝑉𝑃) → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
147123, 124, 146syl2anc 584 . 2 (𝜑 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
148111, 122, 147mp2d 49 1 (𝜑 → (𝑍 𝑈) = (𝐶 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  [wsbc 3737  cdif 3895  cin 3897  {csn 4577  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  distcds 17177  TarskiGcstrkg 28425  TarskiGCcstrkgc 28426  TarskiGBcstrkgb 28427  TarskiGCBcstrkgcb 28428  Itvcitv 28431  LineGclng 28432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-trkgcb 28448  df-trkg 28451
This theorem is referenced by:  tgcgrextend  28483  tgsegconeq  28484  tgifscgr  28506  tgfscgr  28566  tgbtwnconn1lem2  28571  tgbtwnconn1lem3  28572  miriso  28668  midexlem  28690  ragcgr  28705  footexALT  28716  footexlem1  28717  footexlem2  28718  lmiisolem  28794  f1otrg  28869  tg5segofs  34758
  Copyright terms: Public domain W3C validator