MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtg5seg Structured version   Visualization version   GIF version

Theorem axtg5seg 28390
Description: Five segments axiom, Axiom A5 of [Schwabhauser] p. 11. Take two triangles 𝑋𝑍𝑈 and 𝐴𝐶𝑉, a point 𝑌 on 𝑋𝑍, and a point 𝐵 on 𝐴𝐶. If all corresponding line segments except for 𝑍𝑈 and 𝐶𝑉 are congruent ( i.e., 𝑋𝑌 𝐴𝐵, 𝑌𝑍 𝐵𝐶, 𝑋𝑈 𝐴𝑉, and 𝑌𝑈 𝐵𝑉), then 𝑍𝑈 and 𝐶𝑉 are also congruent. As noted in Axiom 5 of [Tarski1999] p. 178, "this axiom is similar in character to the well-known theorems of Euclidean geometry that allow one to conclude, from hypotheses about the congruence of certain corresponding sides and angles in two triangles, the congruence of other corresponding sides and angles." (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtg5seg.1 (𝜑𝑋𝑃)
axtg5seg.2 (𝜑𝑌𝑃)
axtg5seg.3 (𝜑𝑍𝑃)
axtg5seg.4 (𝜑𝐴𝑃)
axtg5seg.5 (𝜑𝐵𝑃)
axtg5seg.6 (𝜑𝐶𝑃)
axtg5seg.7 (𝜑𝑈𝑃)
axtg5seg.8 (𝜑𝑉𝑃)
axtg5seg.9 (𝜑𝑋𝑌)
axtg5seg.10 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
axtg5seg.11 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
axtg5seg.12 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
axtg5seg.13 (𝜑 → (𝑌 𝑍) = (𝐵 𝐶))
axtg5seg.14 (𝜑 → (𝑋 𝑈) = (𝐴 𝑉))
axtg5seg.15 (𝜑 → (𝑌 𝑈) = (𝐵 𝑉))
Assertion
Ref Expression
axtg5seg (𝜑 → (𝑍 𝑈) = (𝐶 𝑉))

Proof of Theorem axtg5seg
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28378 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss2 4213 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
3 inss1 4212 . . . . . . . 8 (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆ TarskiGCB
42, 3sstri 3968 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGCB
51, 4eqsstri 4005 . . . . . 6 TarskiG ⊆ TarskiGCB
6 axtrkg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 3956 . . . . 5 (𝜑𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . . . 8 = (dist‘𝐺)
10 axtrkg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgcb 28381 . . . . . . 7 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
1211simprbi 496 . . . . . 6 (𝐺 ∈ TarskiGCB → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
1312simpld 494 . . . . 5 (𝐺 ∈ TarskiGCB → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)))
147, 13syl 17 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)))
15 axtg5seg.1 . . . . 5 (𝜑𝑋𝑃)
16 axtg5seg.2 . . . . 5 (𝜑𝑌𝑃)
17 axtg5seg.3 . . . . 5 (𝜑𝑍𝑃)
18 neeq1 2994 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
19 oveq1 7410 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2019eleq2d 2820 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
2118, 203anbi12d 1439 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
22 oveq1 7410 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
2322eqeq1d 2737 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑎 𝑏) ↔ (𝑋 𝑦) = (𝑎 𝑏)))
2423anbi1d 631 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐))))
25 oveq1 7410 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 𝑢) = (𝑋 𝑢))
2625eqeq1d 2737 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 𝑢) = (𝑎 𝑣) ↔ (𝑋 𝑢) = (𝑎 𝑣)))
2726anbi1d 631 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))))
2824, 27anbi12d 632 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))))
2921, 28anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))))))
3029imbi1d 341 . . . . . . . . 9 (𝑥 = 𝑋 → ((((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
3130ralbidv 3163 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
32312ralbidv 3205 . . . . . . 7 (𝑥 = 𝑋 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
33322ralbidv 3205 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
34 neeq2 2995 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝑦𝑋𝑌))
35 eleq1 2822 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
3634, 353anbi12d 1439 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
37 oveq2 7411 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
3837eqeq1d 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑎 𝑏) ↔ (𝑋 𝑌) = (𝑎 𝑏)))
39 oveq1 7410 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
4039eqeq1d 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑦 𝑧) = (𝑏 𝑐) ↔ (𝑌 𝑧) = (𝑏 𝑐)))
4138, 40anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐))))
42 oveq1 7410 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑦 𝑢) = (𝑌 𝑢))
4342eqeq1d 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑦 𝑢) = (𝑏 𝑣) ↔ (𝑌 𝑢) = (𝑏 𝑣)))
4443anbi2d 630 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))
4541, 44anbi12d 632 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))))
4636, 45anbi12d 632 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))))
4746imbi1d 341 . . . . . . . . 9 (𝑦 = 𝑌 → ((((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
4847ralbidv 3163 . . . . . . . 8 (𝑦 = 𝑌 → (∀𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
49482ralbidv 3205 . . . . . . 7 (𝑦 = 𝑌 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
50492ralbidv 3205 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
51 oveq2 7411 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
5251eleq2d 2820 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
53523anbi2d 1443 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
54 oveq2 7411 . . . . . . . . . . . . . 14 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
5554eqeq1d 2737 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → ((𝑌 𝑧) = (𝑏 𝑐) ↔ (𝑌 𝑍) = (𝑏 𝑐)))
5655anbi2d 630 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐))))
5756anbi1d 631 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))))
5853, 57anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑍 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))))
59 oveq1 7410 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑢) = (𝑍 𝑢))
6059eqeq1d 2737 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 𝑢) = (𝑐 𝑣) ↔ (𝑍 𝑢) = (𝑐 𝑣)))
6158, 60imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑍 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6261ralbidv 3163 . . . . . . . 8 (𝑧 = 𝑍 → (∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
63622ralbidv 3205 . . . . . . 7 (𝑧 = 𝑍 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
64632ralbidv 3205 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6533, 50, 64rspc3v 3617 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6615, 16, 17, 65syl3anc 1373 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6714, 66mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)))
68 axtg5seg.7 . . . 4 (𝜑𝑈𝑃)
69 axtg5seg.4 . . . 4 (𝜑𝐴𝑃)
70 axtg5seg.5 . . . 4 (𝜑𝐵𝑃)
71 oveq2 7411 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑋 𝑢) = (𝑋 𝑈))
7271eqeq1d 2737 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑋 𝑢) = (𝑎 𝑣) ↔ (𝑋 𝑈) = (𝑎 𝑣)))
73 oveq2 7411 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑌 𝑢) = (𝑌 𝑈))
7473eqeq1d 2737 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑌 𝑢) = (𝑏 𝑣) ↔ (𝑌 𝑈) = (𝑏 𝑣)))
7572, 74anbi12d 632 . . . . . . . . 9 (𝑢 = 𝑈 → (((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))
7675anbi2d 630 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))))
7776anbi2d 630 . . . . . . 7 (𝑢 = 𝑈 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))))
78 oveq2 7411 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 𝑢) = (𝑍 𝑈))
7978eqeq1d 2737 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 𝑢) = (𝑐 𝑣) ↔ (𝑍 𝑈) = (𝑐 𝑣)))
8077, 79imbi12d 344 . . . . . 6 (𝑢 = 𝑈 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
81802ralbidv 3205 . . . . 5 (𝑢 = 𝑈 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
82 oveq1 7410 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝐼𝑐) = (𝐴𝐼𝑐))
8382eleq2d 2820 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑏 ∈ (𝑎𝐼𝑐) ↔ 𝑏 ∈ (𝐴𝐼𝑐)))
84833anbi3d 1444 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐))))
85 oveq1 7410 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
8685eqeq2d 2746 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑋 𝑌) = (𝑎 𝑏) ↔ (𝑋 𝑌) = (𝐴 𝑏)))
8786anbi1d 631 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐))))
88 oveq1 7410 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 𝑣) = (𝐴 𝑣))
8988eqeq2d 2746 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑋 𝑈) = (𝑎 𝑣) ↔ (𝑋 𝑈) = (𝐴 𝑣)))
9089anbi1d 631 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))
9187, 90anbi12d 632 . . . . . . . 8 (𝑎 = 𝐴 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))))
9284, 91anbi12d 632 . . . . . . 7 (𝑎 = 𝐴 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))))
9392imbi1d 341 . . . . . 6 (𝑎 = 𝐴 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
94932ralbidv 3205 . . . . 5 (𝑎 = 𝐴 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
95 eleq1 2822 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝑐)))
96953anbi3d 1444 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐))))
97 oveq2 7411 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
9897eqeq2d 2746 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑋 𝑌) = (𝐴 𝑏) ↔ (𝑋 𝑌) = (𝐴 𝐵)))
99 oveq1 7410 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 𝑐) = (𝐵 𝑐))
10099eqeq2d 2746 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑌 𝑍) = (𝑏 𝑐) ↔ (𝑌 𝑍) = (𝐵 𝑐)))
10198, 100anbi12d 632 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐))))
102 oveq1 7410 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 𝑣) = (𝐵 𝑣))
103102eqeq2d 2746 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑌 𝑈) = (𝑏 𝑣) ↔ (𝑌 𝑈) = (𝐵 𝑣)))
104103anbi2d 630 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))
105101, 104anbi12d 632 . . . . . . . 8 (𝑏 = 𝐵 → ((((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))))
10696, 105anbi12d 632 . . . . . . 7 (𝑏 = 𝐵 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))))
107106imbi1d 341 . . . . . 6 (𝑏 = 𝐵 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
1081072ralbidv 3205 . . . . 5 (𝑏 = 𝐵 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
10981, 94, 108rspc3v 3617 . . . 4 ((𝑈𝑃𝐴𝑃𝐵𝑃) → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
11068, 69, 70, 109syl3anc 1373 . . 3 (𝜑 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
11167, 110mpd 15 . 2 (𝜑 → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)))
112 axtg5seg.9 . . . 4 (𝜑𝑋𝑌)
113 axtg5seg.10 . . . 4 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
114 axtg5seg.11 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
115112, 113, 1143jca 1128 . . 3 (𝜑 → (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)))
116 axtg5seg.12 . . . 4 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
117 axtg5seg.13 . . . 4 (𝜑 → (𝑌 𝑍) = (𝐵 𝐶))
118116, 117jca 511 . . 3 (𝜑 → ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)))
119 axtg5seg.14 . . . 4 (𝜑 → (𝑋 𝑈) = (𝐴 𝑉))
120 axtg5seg.15 . . . 4 (𝜑 → (𝑌 𝑈) = (𝐵 𝑉))
121119, 120jca 511 . . 3 (𝜑 → ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))
122115, 118, 121jca32 515 . 2 (𝜑 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))))
123 axtg5seg.6 . . 3 (𝜑𝐶𝑃)
124 axtg5seg.8 . . 3 (𝜑𝑉𝑃)
125 oveq2 7411 . . . . . . . 8 (𝑐 = 𝐶 → (𝐴𝐼𝑐) = (𝐴𝐼𝐶))
126125eleq2d 2820 . . . . . . 7 (𝑐 = 𝐶 → (𝐵 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝐶)))
1271263anbi3d 1444 . . . . . 6 (𝑐 = 𝐶 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶))))
128 oveq2 7411 . . . . . . . . 9 (𝑐 = 𝐶 → (𝐵 𝑐) = (𝐵 𝐶))
129128eqeq2d 2746 . . . . . . . 8 (𝑐 = 𝐶 → ((𝑌 𝑍) = (𝐵 𝑐) ↔ (𝑌 𝑍) = (𝐵 𝐶)))
130129anbi2d 630 . . . . . . 7 (𝑐 = 𝐶 → (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶))))
131130anbi1d 631 . . . . . 6 (𝑐 = 𝐶 → ((((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))))
132127, 131anbi12d 632 . . . . 5 (𝑐 = 𝐶 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))))
133 oveq1 7410 . . . . . 6 (𝑐 = 𝐶 → (𝑐 𝑣) = (𝐶 𝑣))
134133eqeq2d 2746 . . . . 5 (𝑐 = 𝐶 → ((𝑍 𝑈) = (𝑐 𝑣) ↔ (𝑍 𝑈) = (𝐶 𝑣)))
135132, 134imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝐶 𝑣))))
136 oveq2 7411 . . . . . . . . 9 (𝑣 = 𝑉 → (𝐴 𝑣) = (𝐴 𝑉))
137136eqeq2d 2746 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑋 𝑈) = (𝐴 𝑣) ↔ (𝑋 𝑈) = (𝐴 𝑉)))
138 oveq2 7411 . . . . . . . . 9 (𝑣 = 𝑉 → (𝐵 𝑣) = (𝐵 𝑉))
139138eqeq2d 2746 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑌 𝑈) = (𝐵 𝑣) ↔ (𝑌 𝑈) = (𝐵 𝑉)))
140137, 139anbi12d 632 . . . . . . 7 (𝑣 = 𝑉 → (((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉))))
141140anbi2d 630 . . . . . 6 (𝑣 = 𝑉 → ((((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))))
142141anbi2d 630 . . . . 5 (𝑣 = 𝑉 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉))))))
143 oveq2 7411 . . . . . 6 (𝑣 = 𝑉 → (𝐶 𝑣) = (𝐶 𝑉))
144143eqeq2d 2746 . . . . 5 (𝑣 = 𝑉 → ((𝑍 𝑈) = (𝐶 𝑣) ↔ (𝑍 𝑈) = (𝐶 𝑉)))
145142, 144imbi12d 344 . . . 4 (𝑣 = 𝑉 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝐶 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
146135, 145rspc2v 3612 . . 3 ((𝐶𝑃𝑉𝑃) → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
147123, 124, 146syl2anc 584 . 2 (𝜑 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
148111, 122, 147mp2d 49 1 (𝜑 → (𝑍 𝑈) = (𝐶 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  [wsbc 3765  cdif 3923  cin 3925  {csn 4601  cfv 6530  (class class class)co 7403  cmpo 7405  Basecbs 17226  distcds 17278  TarskiGcstrkg 28352  TarskiGCcstrkgc 28353  TarskiGBcstrkgb 28354  TarskiGCBcstrkgcb 28355  Itvcitv 28358  LineGclng 28359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-trkgcb 28375  df-trkg 28378
This theorem is referenced by:  tgcgrextend  28410  tgsegconeq  28411  tgifscgr  28433  tgfscgr  28493  tgbtwnconn1lem2  28498  tgbtwnconn1lem3  28499  miriso  28595  midexlem  28617  ragcgr  28632  footexALT  28643  footexlem1  28644  footexlem2  28645  lmiisolem  28721  f1otrg  28796  tg5segofs  34651
  Copyright terms: Public domain W3C validator