MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtg5seg Structured version   Visualization version   GIF version

Theorem axtg5seg 28491
Description: Five segments axiom, Axiom A5 of [Schwabhauser] p. 11. Take two triangles 𝑋𝑍𝑈 and 𝐴𝐶𝑉, a point 𝑌 on 𝑋𝑍, and a point 𝐵 on 𝐴𝐶. If all corresponding line segments except for 𝑍𝑈 and 𝐶𝑉 are congruent ( i.e., 𝑋𝑌 𝐴𝐵, 𝑌𝑍 𝐵𝐶, 𝑋𝑈 𝐴𝑉, and 𝑌𝑈 𝐵𝑉), then 𝑍𝑈 and 𝐶𝑉 are also congruent. As noted in Axiom 5 of [Tarski1999] p. 178, "this axiom is similar in character to the well-known theorems of Euclidean geometry that allow one to conclude, from hypotheses about the congruence of certain corresponding sides and angles in two triangles, the congruence of other corresponding sides and angles." (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtg5seg.1 (𝜑𝑋𝑃)
axtg5seg.2 (𝜑𝑌𝑃)
axtg5seg.3 (𝜑𝑍𝑃)
axtg5seg.4 (𝜑𝐴𝑃)
axtg5seg.5 (𝜑𝐵𝑃)
axtg5seg.6 (𝜑𝐶𝑃)
axtg5seg.7 (𝜑𝑈𝑃)
axtg5seg.8 (𝜑𝑉𝑃)
axtg5seg.9 (𝜑𝑋𝑌)
axtg5seg.10 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
axtg5seg.11 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
axtg5seg.12 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
axtg5seg.13 (𝜑 → (𝑌 𝑍) = (𝐵 𝐶))
axtg5seg.14 (𝜑 → (𝑋 𝑈) = (𝐴 𝑉))
axtg5seg.15 (𝜑 → (𝑌 𝑈) = (𝐵 𝑉))
Assertion
Ref Expression
axtg5seg (𝜑 → (𝑍 𝑈) = (𝐶 𝑉))

Proof of Theorem axtg5seg
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 28479 . . . . . . 7 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss2 4259 . . . . . . . 8 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
3 inss1 4258 . . . . . . . 8 (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆ TarskiGCB
42, 3sstri 4018 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGCB
51, 4eqsstri 4043 . . . . . 6 TarskiG ⊆ TarskiGCB
6 axtrkg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
75, 6sselid 4006 . . . . 5 (𝜑𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . . . 8 = (dist‘𝐺)
10 axtrkg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgcb 28482 . . . . . . 7 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
1211simprbi 496 . . . . . 6 (𝐺 ∈ TarskiGCB → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
1312simpld 494 . . . . 5 (𝐺 ∈ TarskiGCB → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)))
147, 13syl 17 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)))
15 axtg5seg.1 . . . . 5 (𝜑𝑋𝑃)
16 axtg5seg.2 . . . . 5 (𝜑𝑌𝑃)
17 axtg5seg.3 . . . . 5 (𝜑𝑍𝑃)
18 neeq1 3009 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
19 oveq1 7455 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2019eleq2d 2830 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
2118, 203anbi12d 1437 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
22 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
2322eqeq1d 2742 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑎 𝑏) ↔ (𝑋 𝑦) = (𝑎 𝑏)))
2423anbi1d 630 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐))))
25 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 𝑢) = (𝑋 𝑢))
2625eqeq1d 2742 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 𝑢) = (𝑎 𝑣) ↔ (𝑋 𝑢) = (𝑎 𝑣)))
2726anbi1d 630 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))))
2824, 27anbi12d 631 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))))
2921, 28anbi12d 631 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))))))
3029imbi1d 341 . . . . . . . . 9 (𝑥 = 𝑋 → ((((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
3130ralbidv 3184 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
32312ralbidv 3227 . . . . . . 7 (𝑥 = 𝑋 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
33322ralbidv 3227 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
34 neeq2 3010 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝑦𝑋𝑌))
35 eleq1 2832 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
3634, 353anbi12d 1437 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
37 oveq2 7456 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
3837eqeq1d 2742 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑎 𝑏) ↔ (𝑋 𝑌) = (𝑎 𝑏)))
39 oveq1 7455 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
4039eqeq1d 2742 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑦 𝑧) = (𝑏 𝑐) ↔ (𝑌 𝑧) = (𝑏 𝑐)))
4138, 40anbi12d 631 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐))))
42 oveq1 7455 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑦 𝑢) = (𝑌 𝑢))
4342eqeq1d 2742 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑦 𝑢) = (𝑏 𝑣) ↔ (𝑌 𝑢) = (𝑏 𝑣)))
4443anbi2d 629 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))
4541, 44anbi12d 631 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))))
4636, 45anbi12d 631 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))))
4746imbi1d 341 . . . . . . . . 9 (𝑦 = 𝑌 → ((((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
4847ralbidv 3184 . . . . . . . 8 (𝑦 = 𝑌 → (∀𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
49482ralbidv 3227 . . . . . . 7 (𝑦 = 𝑌 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
50492ralbidv 3227 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑦𝑦 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣))))
51 oveq2 7456 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
5251eleq2d 2830 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
53523anbi2d 1441 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐))))
54 oveq2 7456 . . . . . . . . . . . . . 14 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
5554eqeq1d 2742 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → ((𝑌 𝑧) = (𝑏 𝑐) ↔ (𝑌 𝑍) = (𝑏 𝑐)))
5655anbi2d 629 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐))))
5756anbi1d 630 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))))
5853, 57anbi12d 631 . . . . . . . . . 10 (𝑧 = 𝑍 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))))))
59 oveq1 7455 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑢) = (𝑍 𝑢))
6059eqeq1d 2742 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 𝑢) = (𝑐 𝑣) ↔ (𝑍 𝑢) = (𝑐 𝑣)))
6158, 60imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑍 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6261ralbidv 3184 . . . . . . . 8 (𝑧 = 𝑍 → (∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
63622ralbidv 3227 . . . . . . 7 (𝑧 = 𝑍 → (∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
64632ralbidv 3227 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑧) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ↔ ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6533, 50, 64rspc3v 3651 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6615, 16, 17, 65syl3anc 1371 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣))))
6714, 66mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)))
68 axtg5seg.7 . . . 4 (𝜑𝑈𝑃)
69 axtg5seg.4 . . . 4 (𝜑𝐴𝑃)
70 axtg5seg.5 . . . 4 (𝜑𝐵𝑃)
71 oveq2 7456 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑋 𝑢) = (𝑋 𝑈))
7271eqeq1d 2742 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑋 𝑢) = (𝑎 𝑣) ↔ (𝑋 𝑈) = (𝑎 𝑣)))
73 oveq2 7456 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑌 𝑢) = (𝑌 𝑈))
7473eqeq1d 2742 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑌 𝑢) = (𝑏 𝑣) ↔ (𝑌 𝑈) = (𝑏 𝑣)))
7572, 74anbi12d 631 . . . . . . . . 9 (𝑢 = 𝑈 → (((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))
7675anbi2d 629 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))))
7776anbi2d 629 . . . . . . 7 (𝑢 = 𝑈 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))))
78 oveq2 7456 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 𝑢) = (𝑍 𝑈))
7978eqeq1d 2742 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 𝑢) = (𝑐 𝑣) ↔ (𝑍 𝑈) = (𝑐 𝑣)))
8077, 79imbi12d 344 . . . . . 6 (𝑢 = 𝑈 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
81802ralbidv 3227 . . . . 5 (𝑢 = 𝑈 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
82 oveq1 7455 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝐼𝑐) = (𝐴𝐼𝑐))
8382eleq2d 2830 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑏 ∈ (𝑎𝐼𝑐) ↔ 𝑏 ∈ (𝐴𝐼𝑐)))
84833anbi3d 1442 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐))))
85 oveq1 7455 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
8685eqeq2d 2751 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑋 𝑌) = (𝑎 𝑏) ↔ (𝑋 𝑌) = (𝐴 𝑏)))
8786anbi1d 630 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐))))
88 oveq1 7455 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 𝑣) = (𝐴 𝑣))
8988eqeq2d 2751 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑋 𝑈) = (𝑎 𝑣) ↔ (𝑋 𝑈) = (𝐴 𝑣)))
9089anbi1d 630 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))
9187, 90anbi12d 631 . . . . . . . 8 (𝑎 = 𝐴 → ((((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))))
9284, 91anbi12d 631 . . . . . . 7 (𝑎 = 𝐴 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))))))
9392imbi1d 341 . . . . . 6 (𝑎 = 𝐴 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
94932ralbidv 3227 . . . . 5 (𝑎 = 𝐴 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝑎 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
95 eleq1 2832 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝑐)))
96953anbi3d 1442 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐))))
97 oveq2 7456 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
9897eqeq2d 2751 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑋 𝑌) = (𝐴 𝑏) ↔ (𝑋 𝑌) = (𝐴 𝐵)))
99 oveq1 7455 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 𝑐) = (𝐵 𝑐))
10099eqeq2d 2751 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑌 𝑍) = (𝑏 𝑐) ↔ (𝑌 𝑍) = (𝐵 𝑐)))
10198, 100anbi12d 631 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐))))
102 oveq1 7455 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 𝑣) = (𝐵 𝑣))
103102eqeq2d 2751 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑌 𝑈) = (𝑏 𝑣) ↔ (𝑌 𝑈) = (𝐵 𝑣)))
104103anbi2d 629 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))
105101, 104anbi12d 631 . . . . . . . 8 (𝑏 = 𝐵 → ((((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))))
10696, 105anbi12d 631 . . . . . . 7 (𝑏 = 𝐵 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))))
107106imbi1d 341 . . . . . 6 (𝑏 = 𝐵 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
1081072ralbidv 3227 . . . . 5 (𝑏 = 𝐵 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝑏 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
10981, 94, 108rspc3v 3651 . . . 4 ((𝑈𝑃𝐴𝑃𝐵𝑃) → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
11068, 69, 70, 109syl3anc 1371 . . 3 (𝜑 → (∀𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝑎 𝑏) ∧ (𝑌 𝑍) = (𝑏 𝑐)) ∧ ((𝑋 𝑢) = (𝑎 𝑣) ∧ (𝑌 𝑢) = (𝑏 𝑣)))) → (𝑍 𝑢) = (𝑐 𝑣)) → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣))))
11167, 110mpd 15 . 2 (𝜑 → ∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)))
112 axtg5seg.9 . . . 4 (𝜑𝑋𝑌)
113 axtg5seg.10 . . . 4 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
114 axtg5seg.11 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
115112, 113, 1143jca 1128 . . 3 (𝜑 → (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)))
116 axtg5seg.12 . . . 4 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
117 axtg5seg.13 . . . 4 (𝜑 → (𝑌 𝑍) = (𝐵 𝐶))
118116, 117jca 511 . . 3 (𝜑 → ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)))
119 axtg5seg.14 . . . 4 (𝜑 → (𝑋 𝑈) = (𝐴 𝑉))
120 axtg5seg.15 . . . 4 (𝜑 → (𝑌 𝑈) = (𝐵 𝑉))
121119, 120jca 511 . . 3 (𝜑 → ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))
122115, 118, 121jca32 515 . 2 (𝜑 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))))
123 axtg5seg.6 . . 3 (𝜑𝐶𝑃)
124 axtg5seg.8 . . 3 (𝜑𝑉𝑃)
125 oveq2 7456 . . . . . . . 8 (𝑐 = 𝐶 → (𝐴𝐼𝑐) = (𝐴𝐼𝐶))
126125eleq2d 2830 . . . . . . 7 (𝑐 = 𝐶 → (𝐵 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝐶)))
1271263anbi3d 1442 . . . . . 6 (𝑐 = 𝐶 → ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ↔ (𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶))))
128 oveq2 7456 . . . . . . . . 9 (𝑐 = 𝐶 → (𝐵 𝑐) = (𝐵 𝐶))
129128eqeq2d 2751 . . . . . . . 8 (𝑐 = 𝐶 → ((𝑌 𝑍) = (𝐵 𝑐) ↔ (𝑌 𝑍) = (𝐵 𝐶)))
130129anbi2d 629 . . . . . . 7 (𝑐 = 𝐶 → (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ↔ ((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶))))
131130anbi1d 630 . . . . . 6 (𝑐 = 𝐶 → ((((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))))
132127, 131anbi12d 631 . . . . 5 (𝑐 = 𝐶 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))))))
133 oveq1 7455 . . . . . 6 (𝑐 = 𝐶 → (𝑐 𝑣) = (𝐶 𝑣))
134133eqeq2d 2751 . . . . 5 (𝑐 = 𝐶 → ((𝑍 𝑈) = (𝑐 𝑣) ↔ (𝑍 𝑈) = (𝐶 𝑣)))
135132, 134imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝐶 𝑣))))
136 oveq2 7456 . . . . . . . . 9 (𝑣 = 𝑉 → (𝐴 𝑣) = (𝐴 𝑉))
137136eqeq2d 2751 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑋 𝑈) = (𝐴 𝑣) ↔ (𝑋 𝑈) = (𝐴 𝑉)))
138 oveq2 7456 . . . . . . . . 9 (𝑣 = 𝑉 → (𝐵 𝑣) = (𝐵 𝑉))
139138eqeq2d 2751 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑌 𝑈) = (𝐵 𝑣) ↔ (𝑌 𝑈) = (𝐵 𝑉)))
140137, 139anbi12d 631 . . . . . . 7 (𝑣 = 𝑉 → (((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)) ↔ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉))))
141140anbi2d 629 . . . . . 6 (𝑣 = 𝑉 → ((((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣))) ↔ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))))
142141anbi2d 629 . . . . 5 (𝑣 = 𝑉 → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) ↔ ((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉))))))
143 oveq2 7456 . . . . . 6 (𝑣 = 𝑉 → (𝐶 𝑣) = (𝐶 𝑉))
144143eqeq2d 2751 . . . . 5 (𝑣 = 𝑉 → ((𝑍 𝑈) = (𝐶 𝑣) ↔ (𝑍 𝑈) = (𝐶 𝑉)))
145142, 144imbi12d 344 . . . 4 (𝑣 = 𝑉 → ((((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝐶 𝑣)) ↔ (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
146135, 145rspc2v 3646 . . 3 ((𝐶𝑃𝑉𝑃) → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
147123, 124, 146syl2anc 583 . 2 (𝜑 → (∀𝑐𝑃𝑣𝑃 (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝑐)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝑐)) ∧ ((𝑋 𝑈) = (𝐴 𝑣) ∧ (𝑌 𝑈) = (𝐵 𝑣)))) → (𝑍 𝑈) = (𝑐 𝑣)) → (((𝑋𝑌𝑌 ∈ (𝑋𝐼𝑍) ∧ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ (((𝑋 𝑌) = (𝐴 𝐵) ∧ (𝑌 𝑍) = (𝐵 𝐶)) ∧ ((𝑋 𝑈) = (𝐴 𝑉) ∧ (𝑌 𝑈) = (𝐵 𝑉)))) → (𝑍 𝑈) = (𝐶 𝑉))))
148111, 122, 147mp2d 49 1 (𝜑 → (𝑍 𝑈) = (𝐶 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  [wsbc 3804  cdif 3973  cin 3975  {csn 4648  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  TarskiGCcstrkgc 28454  TarskiGBcstrkgb 28455  TarskiGCBcstrkgcb 28456  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  tgcgrextend  28511  tgsegconeq  28512  tgifscgr  28534  tgfscgr  28594  tgbtwnconn1lem2  28599  tgbtwnconn1lem3  28600  miriso  28696  midexlem  28718  ragcgr  28733  footexALT  28744  footexlem1  28745  footexlem2  28746  lmiisolem  28822  f1otrg  28897  tg5segofs  34650
  Copyright terms: Public domain W3C validator