Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  raaan2 Structured version   Visualization version   GIF version

Theorem raaan2 42098
Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4303. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypotheses
Ref Expression
raaan2.1 𝑦𝜑
raaan2.2 𝑥𝜓
Assertion
Ref Expression
raaan2 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem raaan2
StepHypRef Expression
1 dfbi3 1033 . 2 ((𝐴 = ∅ ↔ 𝐵 = ∅) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
2 rzal 4296 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
32adantr 474 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
4 rzal 4296 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
54adantr 474 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴 𝜑)
6 rzal 4296 . . . . 5 (𝐵 = ∅ → ∀𝑦𝐵 𝜓)
76adantl 475 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑦𝐵 𝜓)
8 pm5.1 815 . . . 4 ((∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
93, 5, 7, 8syl12anc 827 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
10 df-ne 2970 . . . . 5 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
11 raaan2.1 . . . . . . 7 𝑦𝜑
1211r19.28z 4286 . . . . . 6 (𝐵 ≠ ∅ → (∀𝑦𝐵 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1312ralbidv 3168 . . . . 5 (𝐵 ≠ ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1410, 13sylbir 227 . . . 4 𝐵 = ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
15 df-ne 2970 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
16 nfcv 2934 . . . . . . 7 𝑥𝐵
17 raaan2.2 . . . . . . 7 𝑥𝜓
1816, 17nfral 3127 . . . . . 6 𝑥𝑦𝐵 𝜓
1918r19.27z 4293 . . . . 5 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2015, 19sylbir 227 . . . 4 𝐴 = ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2114, 20sylan9bbr 506 . . 3 ((¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
229, 21jaoi 846 . 2 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
231, 22sylbi 209 1 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wnf 1827  wne 2969  wral 3090  c0 4141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-dif 3795  df-nul 4142
This theorem is referenced by:  2reu4a  42154
  Copyright terms: Public domain W3C validator