MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaan2 Structured version   Visualization version   GIF version

Theorem raaan2 4447
Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4443. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypotheses
Ref Expression
raaan2.1 𝑦𝜑
raaan2.2 𝑥𝜓
Assertion
Ref Expression
raaan2 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem raaan2
StepHypRef Expression
1 dfbi3 1045 . 2 ((𝐴 = ∅ ↔ 𝐵 = ∅) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
2 rzal 4436 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
32adantr 484 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
4 rzal 4436 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
54adantr 484 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴 𝜑)
6 rzal 4436 . . . . 5 (𝐵 = ∅ → ∀𝑦𝐵 𝜓)
76adantl 485 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑦𝐵 𝜓)
8 pm5.1 822 . . . 4 ((∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
93, 5, 7, 8syl12anc 835 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
10 df-ne 3015 . . . . 5 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
11 raaan2.1 . . . . . . 7 𝑦𝜑
1211r19.28z 4426 . . . . . 6 (𝐵 ≠ ∅ → (∀𝑦𝐵 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1312ralbidv 3192 . . . . 5 (𝐵 ≠ ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1410, 13sylbir 238 . . . 4 𝐵 = ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
15 df-ne 3015 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
16 nfcv 2982 . . . . . . 7 𝑥𝐵
17 raaan2.2 . . . . . . 7 𝑥𝜓
1816, 17nfralw 3219 . . . . . 6 𝑥𝑦𝐵 𝜓
1918r19.27z 4433 . . . . 5 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2015, 19sylbir 238 . . . 4 𝐴 = ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2114, 20sylan9bbr 514 . . 3 ((¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
229, 21jaoi 854 . 2 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
231, 22sylbi 220 1 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wnf 1785  wne 3014  wral 3133  c0 4276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-dif 3922  df-nul 4277
This theorem is referenced by:  2reu4lem  4448
  Copyright terms: Public domain W3C validator