MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaan2 Structured version   Visualization version   GIF version

Theorem raaan2 4496
Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4492. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypotheses
Ref Expression
raaan2.1 𝑦𝜑
raaan2.2 𝑥𝜓
Assertion
Ref Expression
raaan2 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem raaan2
StepHypRef Expression
1 dfbi3 1049 . 2 ((𝐴 = ∅ ↔ 𝐵 = ∅) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
2 rzal 4484 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
32adantr 480 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
4 rzal 4484 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
54adantr 480 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴 𝜑)
6 rzal 4484 . . . . 5 (𝐵 = ∅ → ∀𝑦𝐵 𝜓)
76adantl 481 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑦𝐵 𝜓)
8 pm5.1 823 . . . 4 ((∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
93, 5, 7, 8syl12anc 836 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
10 df-ne 2933 . . . . 5 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
11 raaan2.1 . . . . . . 7 𝑦𝜑
1211r19.28z 4473 . . . . . 6 (𝐵 ≠ ∅ → (∀𝑦𝐵 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1312ralbidv 3163 . . . . 5 (𝐵 ≠ ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1410, 13sylbir 235 . . . 4 𝐵 = ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
15 df-ne 2933 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
16 nfcv 2898 . . . . . . 7 𝑥𝐵
17 raaan2.2 . . . . . . 7 𝑥𝜓
1816, 17nfralw 3291 . . . . . 6 𝑥𝑦𝐵 𝜓
1918r19.27z 4480 . . . . 5 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2015, 19sylbir 235 . . . 4 𝐴 = ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2114, 20sylan9bbr 510 . . 3 ((¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
229, 21jaoi 857 . 2 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
231, 22sylbi 217 1 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wnf 1783  wne 2932  wral 3051  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-dif 3929  df-nul 4309
This theorem is referenced by:  2reu4lem  4497
  Copyright terms: Public domain W3C validator