MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaan2 Structured version   Visualization version   GIF version

Theorem raaan2 4455
Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4451. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypotheses
Ref Expression
raaan2.1 𝑦𝜑
raaan2.2 𝑥𝜓
Assertion
Ref Expression
raaan2 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem raaan2
StepHypRef Expression
1 dfbi3 1047 . 2 ((𝐴 = ∅ ↔ 𝐵 = ∅) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
2 rzal 4439 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
32adantr 481 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
4 rzal 4439 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
54adantr 481 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑥𝐴 𝜑)
6 rzal 4439 . . . . 5 (𝐵 = ∅ → ∀𝑦𝐵 𝜓)
76adantl 482 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∀𝑦𝐵 𝜓)
8 pm5.1 821 . . . 4 ((∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
93, 5, 7, 8syl12anc 834 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
10 df-ne 2944 . . . . 5 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
11 raaan2.1 . . . . . . 7 𝑦𝜑
1211r19.28z 4428 . . . . . 6 (𝐵 ≠ ∅ → (∀𝑦𝐵 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1312ralbidv 3112 . . . . 5 (𝐵 ≠ ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
1410, 13sylbir 234 . . . 4 𝐵 = ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓)))
15 df-ne 2944 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
16 nfcv 2907 . . . . . . 7 𝑥𝐵
17 raaan2.2 . . . . . . 7 𝑥𝜓
1816, 17nfralw 3151 . . . . . 6 𝑥𝑦𝐵 𝜓
1918r19.27z 4435 . . . . 5 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2015, 19sylbir 234 . . . 4 𝐴 = ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
2114, 20sylan9bbr 511 . . 3 ((¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
229, 21jaoi 854 . 2 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
231, 22sylbi 216 1 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wnf 1786  wne 2943  wral 3064  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-dif 3890  df-nul 4257
This theorem is referenced by:  2reu4lem  4456
  Copyright terms: Public domain W3C validator