MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbi Structured version   Visualization version   GIF version

Theorem ifbi 4570
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifbi
StepHypRef Expression
1 dfbi3 1050 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
2 iftrue 4554 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
3 iftrue 4554 . . . . 5 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
43eqcomd 2746 . . . 4 (𝜓𝐴 = if(𝜓, 𝐴, 𝐵))
52, 4sylan9eq 2800 . . 3 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
6 iffalse 4557 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
7 iffalse 4557 . . . . 5 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
87eqcomd 2746 . . . 4 𝜓𝐵 = if(𝜓, 𝐴, 𝐵))
96, 8sylan9eq 2800 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
105, 9jaoi 856 . 2 (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
111, 10sylbi 217 1 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  ifcif 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-if 4549
This theorem is referenced by:  ifbid  4571  ifbieq2i  4573  prodeq1i  15964  gsummoncoe1  22333  scmatscm  22540  mulmarep1gsum1  22600  madugsum  22670  mp2pm2mplem4  22836  dchrhash  27333  lgsdi  27396  rpvmasum2  27574  ifnebib  32572  itgeq12i  36170  bj-projval  36962  matunitlindflem2  37577  itg2gt0cn  37635  dedths  38918  dfafv2  47047
  Copyright terms: Public domain W3C validator