MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbi Structured version   Visualization version   GIF version

Theorem ifbi 4542
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifbi
StepHypRef Expression
1 dfbi3 1046 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
2 iftrue 4526 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
3 iftrue 4526 . . . . 5 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
43eqcomd 2730 . . . 4 (𝜓𝐴 = if(𝜓, 𝐴, 𝐵))
52, 4sylan9eq 2784 . . 3 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
6 iffalse 4529 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
7 iffalse 4529 . . . . 5 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
87eqcomd 2730 . . . 4 𝜓𝐵 = if(𝜓, 𝐴, 𝐵))
96, 8sylan9eq 2784 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
105, 9jaoi 854 . 2 (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
111, 10sylbi 216 1 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  ifcif 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-if 4521
This theorem is referenced by:  ifbid  4543  ifbieq2i  4545  gsummoncoe1  22149  scmatscm  22337  mulmarep1gsum1  22397  madugsum  22467  mp2pm2mplem4  22633  dchrhash  27120  lgsdi  27183  rpvmasum2  27361  ifnebib  32250  bj-projval  36367  matunitlindflem2  36975  itg2gt0cn  37033  dedths  38322  dfafv2  46325
  Copyright terms: Public domain W3C validator