MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbi Structured version   Visualization version   GIF version

Theorem ifbi 4550
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifbi
StepHypRef Expression
1 dfbi3 1048 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
2 iftrue 4534 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
3 iftrue 4534 . . . . 5 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
43eqcomd 2738 . . . 4 (𝜓𝐴 = if(𝜓, 𝐴, 𝐵))
52, 4sylan9eq 2792 . . 3 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
6 iffalse 4537 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
7 iffalse 4537 . . . . 5 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
87eqcomd 2738 . . . 4 𝜓𝐵 = if(𝜓, 𝐴, 𝐵))
96, 8sylan9eq 2792 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
105, 9jaoi 855 . 2 (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
111, 10sylbi 216 1 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  ifcif 4528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-if 4529
This theorem is referenced by:  ifbid  4551  ifbieq2i  4553  gsummoncoe1  21835  scmatscm  22022  mulmarep1gsum1  22082  madugsum  22152  mp2pm2mplem4  22318  dchrhash  26781  lgsdi  26844  rpvmasum2  27022  ifnebib  31819  bj-projval  35969  matunitlindflem2  36577  itg2gt0cn  36635  dedths  37924  dfafv2  45925
  Copyright terms: Public domain W3C validator