| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbi | Structured version Visualization version GIF version | ||
| Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| Ref | Expression |
|---|---|
| ifbi | ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi3 1049 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) | |
| 2 | iftrue 4511 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | iftrue 4511 | . . . . 5 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 4 | 3 | eqcomd 2742 | . . . 4 ⊢ (𝜓 → 𝐴 = if(𝜓, 𝐴, 𝐵)) |
| 5 | 2, 4 | sylan9eq 2791 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| 6 | iffalse 4514 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 7 | iffalse 4514 | . . . . 5 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 8 | 7 | eqcomd 2742 | . . . 4 ⊢ (¬ 𝜓 → 𝐵 = if(𝜓, 𝐴, 𝐵)) |
| 9 | 6, 8 | sylan9eq 2791 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| 10 | 5, 9 | jaoi 857 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: ifbid 4529 ifbieq2i 4531 prodeq1i 15937 psdmvr 22112 gsummoncoe1 22251 scmatscm 22456 mulmarep1gsum1 22516 madugsum 22586 mp2pm2mplem4 22752 dchrhash 27239 lgsdi 27302 rpvmasum2 27480 ifnebib 32535 itgeq12i 36229 bj-projval 37019 matunitlindflem2 37646 itg2gt0cn 37704 dedths 38985 dfafv2 47128 |
| Copyright terms: Public domain | W3C validator |