MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbi Structured version   Visualization version   GIF version

Theorem ifbi 4436
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifbi
StepHypRef Expression
1 dfbi3 1049 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
2 iftrue 4420 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
3 iftrue 4420 . . . . 5 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
43eqcomd 2744 . . . 4 (𝜓𝐴 = if(𝜓, 𝐴, 𝐵))
52, 4sylan9eq 2793 . . 3 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
6 iffalse 4423 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
7 iffalse 4423 . . . . 5 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
87eqcomd 2744 . . . 4 𝜓𝐵 = if(𝜓, 𝐴, 𝐵))
96, 8sylan9eq 2793 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
105, 9jaoi 856 . 2 (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
111, 10sylbi 220 1 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  ifcif 4414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-if 4415
This theorem is referenced by:  ifbid  4437  ifbieq2i  4439  gsummoncoe1  21079  scmatscm  21264  mulmarep1gsum1  21324  madugsum  21394  mp2pm2mplem4  21560  dchrhash  26007  lgsdi  26070  rpvmasum2  26248  bj-projval  34829  matunitlindflem2  35417  itg2gt0cn  35475  dedths  36619  dfafv2  44177
  Copyright terms: Public domain W3C validator