![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbi | Structured version Visualization version GIF version |
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
Ref | Expression |
---|---|
ifbi | ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi3 1049 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) | |
2 | iftrue 4537 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | iftrue 4537 | . . . . 5 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
4 | 3 | eqcomd 2741 | . . . 4 ⊢ (𝜓 → 𝐴 = if(𝜓, 𝐴, 𝐵)) |
5 | 2, 4 | sylan9eq 2795 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
6 | iffalse 4540 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
7 | iffalse 4540 | . . . . 5 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
8 | 7 | eqcomd 2741 | . . . 4 ⊢ (¬ 𝜓 → 𝐵 = if(𝜓, 𝐴, 𝐵)) |
9 | 6, 8 | sylan9eq 2795 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
10 | 5, 9 | jaoi 857 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
11 | 1, 10 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: ifbid 4554 ifbieq2i 4556 prodeq1i 15949 gsummoncoe1 22328 scmatscm 22535 mulmarep1gsum1 22595 madugsum 22665 mp2pm2mplem4 22831 dchrhash 27330 lgsdi 27393 rpvmasum2 27571 ifnebib 32570 itgeq12i 36188 bj-projval 36979 matunitlindflem2 37604 itg2gt0cn 37662 dedths 38944 dfafv2 47082 |
Copyright terms: Public domain | W3C validator |