MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqf11 Structured version   Visualization version   GIF version

Theorem sqf11 26643
Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
sqf11 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem sqf11
StepHypRef Expression
1 nnnn0 12479 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2 nnnn0 12479 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
3 pc11 16813 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
41, 2, 3syl2an 597 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
54ad2ant2r 746 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
6 eleq1 2822 . . . . 5 ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ))
7 dfbi3 1049 . . . . . 6 (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)))
8 sqfpc 26641 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
98ad4ant124 1174 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
10 nnle1eq1 12242 . . . . . . . . . 10 ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝 pCnt 𝐴) = 1))
119, 10syl5ibcom 244 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 1))
12 simprl 770 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
1312adantr 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
14 simplrr 777 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (μ‘𝐵) ≠ 0)
15 simpr 486 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
16 sqfpc 26641 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
1713, 14, 15, 16syl3anc 1372 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
18 nnle1eq1 12242 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) ∈ ℕ → ((𝑝 pCnt 𝐵) ≤ 1 ↔ (𝑝 pCnt 𝐵) = 1))
1917, 18syl5ibcom 244 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 1))
2011, 19anim12d 610 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1)))
21 eqtr3 2759 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
2220, 21syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
23 id 22 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
24 simpll 766 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
25 pccl 16782 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2623, 24, 25syl2anr 598 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
27 elnn0 12474 . . . . . . . . . . 11 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2826, 27sylib 217 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2928ord 863 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 0))
30 pccl 16782 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3123, 12, 30syl2anr 598 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
32 elnn0 12474 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3331, 32sylib 217 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3433ord 863 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 0))
3529, 34anim12d 610 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0)))
36 eqtr3 2759 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3735, 36syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
3822, 37jaod 858 . . . . . 6 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
397, 38biimtrid 241 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
406, 39impbid2 225 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ)))
41 pcelnn 16803 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
4223, 24, 41syl2anr 598 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
43 pcelnn 16803 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4423, 12, 43syl2anr 598 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4542, 44bibi12d 346 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (𝑝𝐴𝑝𝐵)))
4640, 45bitrd 279 . . 3 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
4746ralbidva 3176 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
485, 47bitrd 279 1 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  wral 3062   class class class wbr 5149  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111  cle 11249  cn 12212  0cn0 12472  cdvds 16197  cprime 16608   pCnt cpc 16769  μcmu 26599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-fz 13485  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-gcd 16436  df-prm 16609  df-pc 16770  df-mu 26605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator