MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqf11 Structured version   Visualization version   GIF version

Theorem sqf11 26632
Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
sqf11 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem sqf11
StepHypRef Expression
1 nnnn0 12475 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2 nnnn0 12475 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
3 pc11 16809 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
41, 2, 3syl2an 596 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
54ad2ant2r 745 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
6 eleq1 2821 . . . . 5 ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ))
7 dfbi3 1048 . . . . . 6 (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)))
8 sqfpc 26630 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
98ad4ant124 1173 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
10 nnle1eq1 12238 . . . . . . . . . 10 ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝 pCnt 𝐴) = 1))
119, 10syl5ibcom 244 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 1))
12 simprl 769 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
1312adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
14 simplrr 776 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (μ‘𝐵) ≠ 0)
15 simpr 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
16 sqfpc 26630 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
1713, 14, 15, 16syl3anc 1371 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
18 nnle1eq1 12238 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) ∈ ℕ → ((𝑝 pCnt 𝐵) ≤ 1 ↔ (𝑝 pCnt 𝐵) = 1))
1917, 18syl5ibcom 244 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 1))
2011, 19anim12d 609 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1)))
21 eqtr3 2758 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
2220, 21syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
23 id 22 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
24 simpll 765 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
25 pccl 16778 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2623, 24, 25syl2anr 597 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
27 elnn0 12470 . . . . . . . . . . 11 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2826, 27sylib 217 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2928ord 862 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 0))
30 pccl 16778 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3123, 12, 30syl2anr 597 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
32 elnn0 12470 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3331, 32sylib 217 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3433ord 862 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 0))
3529, 34anim12d 609 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0)))
36 eqtr3 2758 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3735, 36syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
3822, 37jaod 857 . . . . . 6 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
397, 38biimtrid 241 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
406, 39impbid2 225 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ)))
41 pcelnn 16799 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
4223, 24, 41syl2anr 597 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
43 pcelnn 16799 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4423, 12, 43syl2anr 597 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4542, 44bibi12d 345 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (𝑝𝐴𝑝𝐵)))
4640, 45bitrd 278 . . 3 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
4746ralbidva 3175 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
485, 47bitrd 278 1 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061   class class class wbr 5147  cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107  cle 11245  cn 12208  0cn0 12468  cdvds 16193  cprime 16604   pCnt cpc 16765  μcmu 26588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-mu 26594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator