MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqf11 Structured version   Visualization version   GIF version

Theorem sqf11 26987
Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
sqf11 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem sqf11
StepHypRef Expression
1 nnnn0 12476 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2 nnnn0 12476 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
3 pc11 16812 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
41, 2, 3syl2an 595 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
54ad2ant2r 744 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
6 eleq1 2813 . . . . 5 ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ))
7 dfbi3 1046 . . . . . 6 (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)))
8 sqfpc 26985 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
98ad4ant124 1170 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
10 nnle1eq1 12239 . . . . . . . . . 10 ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝 pCnt 𝐴) = 1))
119, 10syl5ibcom 244 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 1))
12 simprl 768 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
1312adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
14 simplrr 775 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (μ‘𝐵) ≠ 0)
15 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
16 sqfpc 26985 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
1713, 14, 15, 16syl3anc 1368 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
18 nnle1eq1 12239 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) ∈ ℕ → ((𝑝 pCnt 𝐵) ≤ 1 ↔ (𝑝 pCnt 𝐵) = 1))
1917, 18syl5ibcom 244 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 1))
2011, 19anim12d 608 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1)))
21 eqtr3 2750 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
2220, 21syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
23 id 22 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
24 simpll 764 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
25 pccl 16781 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2623, 24, 25syl2anr 596 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
27 elnn0 12471 . . . . . . . . . . 11 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2826, 27sylib 217 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2928ord 861 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 0))
30 pccl 16781 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3123, 12, 30syl2anr 596 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
32 elnn0 12471 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3331, 32sylib 217 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3433ord 861 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 0))
3529, 34anim12d 608 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0)))
36 eqtr3 2750 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3735, 36syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
3822, 37jaod 856 . . . . . 6 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
397, 38biimtrid 241 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
406, 39impbid2 225 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ)))
41 pcelnn 16802 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
4223, 24, 41syl2anr 596 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
43 pcelnn 16802 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4423, 12, 43syl2anr 596 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4542, 44bibi12d 345 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (𝑝𝐴𝑝𝐵)))
4640, 45bitrd 279 . . 3 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
4746ralbidva 3167 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
485, 47bitrd 279 1 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2932  wral 3053   class class class wbr 5138  cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107  cle 11246  cn 12209  0cn0 12469  cdvds 16194  cprime 16605   pCnt cpc 16768  μcmu 26943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-fz 13482  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16195  df-gcd 16433  df-prm 16606  df-pc 16769  df-mu 26949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator