MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqf11 Structured version   Visualization version   GIF version

Theorem sqf11 25708
Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
sqf11 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem sqf11
StepHypRef Expression
1 nnnn0 11896 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2 nnnn0 11896 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
3 pc11 16208 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
41, 2, 3syl2an 597 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
54ad2ant2r 745 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
6 eleq1 2898 . . . . 5 ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ))
7 dfbi3 1043 . . . . . 6 (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)))
8 sqfpc 25706 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
98ad4ant124 1167 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
10 nnle1eq1 11659 . . . . . . . . . 10 ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝 pCnt 𝐴) = 1))
119, 10syl5ibcom 247 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 1))
12 simprl 769 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
1312adantr 483 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
14 simplrr 776 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (μ‘𝐵) ≠ 0)
15 simpr 487 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
16 sqfpc 25706 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
1713, 14, 15, 16syl3anc 1365 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
18 nnle1eq1 11659 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) ∈ ℕ → ((𝑝 pCnt 𝐵) ≤ 1 ↔ (𝑝 pCnt 𝐵) = 1))
1917, 18syl5ibcom 247 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 1))
2011, 19anim12d 610 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1)))
21 eqtr3 2841 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
2220, 21syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
23 id 22 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
24 simpll 765 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
25 pccl 16178 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2623, 24, 25syl2anr 598 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
27 elnn0 11891 . . . . . . . . . . 11 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2826, 27sylib 220 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
2928ord 860 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 0))
30 pccl 16178 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3123, 12, 30syl2anr 598 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
32 elnn0 11891 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3331, 32sylib 220 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3433ord 860 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 0))
3529, 34anim12d 610 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0)))
36 eqtr3 2841 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3735, 36syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
3822, 37jaod 855 . . . . . 6 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
397, 38syl5bi 244 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
406, 39impbid2 228 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ)))
41 pcelnn 16198 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
4223, 24, 41syl2anr 598 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
43 pcelnn 16198 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4423, 12, 43syl2anr 598 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4542, 44bibi12d 348 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (𝑝𝐴𝑝𝐵)))
4640, 45bitrd 281 . . 3 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
4746ralbidva 3194 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
485, 47bitrd 281 1 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1530  wcel 2107  wne 3014  wral 3136   class class class wbr 5057  cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530  cle 10668  cn 11630  0cn0 11889  cdvds 15599  cprime 16007   pCnt cpc 16165  μcmu 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12885  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166  df-mu 25670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator