Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeq1i Structured version   Visualization version   GIF version

Theorem disjeq1i 36148
Description: Equality theorem for disjoint collection. Inference version. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
disjeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
disjeq1i (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶)

Proof of Theorem disjeq1i
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 disjeq1i.1 . . . 4 𝐴 = 𝐵
21rmoeqi 36143 . . 3 (∃*𝑥𝐴 𝑡𝐶 ↔ ∃*𝑥𝐵 𝑡𝐶)
32albii 1817 . 2 (∀𝑡∃*𝑥𝐴 𝑡𝐶 ↔ ∀𝑡∃*𝑥𝐵 𝑡𝐶)
4 df-disj 5134 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑡∃*𝑥𝐴 𝑡𝐶)
5 df-disj 5134 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑡∃*𝑥𝐵 𝑡𝐶)
63, 4, 53bitr4i 303 1 (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wcel 2108  ∃*wrmo 3387  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-clel 2819  df-rmo 3388  df-disj 5134
This theorem is referenced by:  disjeq12i  36149
  Copyright terms: Public domain W3C validator