Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbceqbii Structured version   Visualization version   GIF version

Theorem sbceqbii 36147
Description: Formula-building inference for class substitution. General version of sbcbii 3865. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
sbceqbii.1 𝐴 = 𝐵
sbceqbii.2 (𝜑𝜓)
Assertion
Ref Expression
sbceqbii ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜓)

Proof of Theorem sbceqbii
StepHypRef Expression
1 sbceqbii.1 . . 3 𝐴 = 𝐵
2 sbceqbii.2 . . . 4 (𝜑𝜓)
32abbii 2812 . . 3 {𝑥𝜑} = {𝑥𝜓}
41, 3eleq12i 2837 . 2 (𝐴 ∈ {𝑥𝜑} ↔ 𝐵 ∈ {𝑥𝜓})
5 df-sbc 3805 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
6 df-sbc 3805 . 2 ([𝐵 / 𝑥]𝜓𝐵 ∈ {𝑥𝜓})
74, 5, 63bitr4i 303 1 ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {cab 2717  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator