Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoeqi Structured version   Visualization version   GIF version

Theorem rmoeqi 36143
Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
rmoeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rmoeqi (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐵 𝜓)

Proof of Theorem rmoeqi
StepHypRef Expression
1 rmoeqi.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2836 . . . 4 (𝑥𝐴𝑥𝐵)
32anbi1i 623 . . 3 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓))
43mobii 2551 . 2 (∃*𝑥(𝑥𝐴𝜓) ↔ ∃*𝑥(𝑥𝐵𝜓))
5 df-rmo 3388 . 2 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
6 df-rmo 3388 . 2 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥(𝑥𝐵𝜓))
74, 5, 63bitr4i 303 1 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  ∃*wmo 2541  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-clel 2819  df-rmo 3388
This theorem is referenced by:  disjeq1i  36148
  Copyright terms: Public domain W3C validator