![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeq12i | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint collection. Inference version. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
disjeq12i.1 | ⊢ 𝐴 = 𝐵 |
disjeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
disjeq12i | ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq2 5121 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐷)) | |
2 | disjeq12i.2 | . . . 4 ⊢ 𝐶 = 𝐷 | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 = 𝐷) |
4 | 1, 3 | mprg 3063 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐷) |
5 | disjeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
6 | 5 | disjeq1i 36134 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐷 ↔ Disj 𝑥 ∈ 𝐵 𝐷) |
7 | 4, 6 | bitri 275 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1535 ∈ wcel 2104 Disj wdisj 5117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1775 df-mo 2536 df-cleq 2725 df-clel 2812 df-ral 3058 df-rmo 3376 df-ss 3980 df-disj 5118 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |