Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeq12i Structured version   Visualization version   GIF version

Theorem disjeq12i 36149
Description: Equality theorem for disjoint collection. Inference version. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
disjeq12i.1 𝐴 = 𝐵
disjeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
disjeq12i (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷)

Proof of Theorem disjeq12i
StepHypRef Expression
1 disjeq2 5137 . . 3 (∀𝑥𝐴 𝐶 = 𝐷 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐷))
2 disjeq12i.2 . . . 4 𝐶 = 𝐷
32a1i 11 . . 3 (𝑥𝐴𝐶 = 𝐷)
41, 3mprg 3073 . 2 (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐷)
5 disjeq12i.1 . . 3 𝐴 = 𝐵
65disjeq1i 36148 . 2 (Disj 𝑥𝐴 𝐷Disj 𝑥𝐵 𝐷)
74, 6bitri 275 1 (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-clel 2819  df-ral 3068  df-rmo 3388  df-ss 3993  df-disj 5134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator