| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitrri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitr2i 276 | . 2 ⊢ (𝜒 ↔ 𝜑) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nbbn 383 pm5.17 1013 dn1 1057 sb8v 2353 sb8f 2354 dfeumo 2532 2ex2rexrot 3267 sbralie 3318 sbralieALT 3319 sbralieOLD 3320 ceqsralt 3471 reu8 3687 sbcimdv 3805 sbcg 3809 unass 4117 ssin 4184 difab 4255 eq0rdv 4352 csbab 4385 ralidm 4457 iunssf 4988 iunss 4989 poirr 5531 elvvv 5687 cnvuni 5821 dfco2 6187 resin 6780 dffv2 6912 dff1o6 7204 fsplit 8042 naddasslem1 8604 naddasslem2 8605 sbthcl 9007 fiint 9206 rankf 9682 dfac3 10007 dfac5lem3 10011 elznn0 12478 elnn1uz2 12818 lsmspsn 21013 elold 27809 elzs2 28318 cmbr2i 31568 pjss2i 31652 iuninc 32532 fineqvrep 35129 dffr5 35790 brsset 35923 brtxpsd 35928 ellines 36186 itg2addnclem3 37713 dvasin 37744 cvlsupr3 39383 dihglb2 41381 oneptri 43290 faosnf0.11b 43460 ifpidg 43524 dfsucon 43556 iscard4 43566 dffrege76 43972 dffrege99 43995 ntrneikb 44127 disjinfi 45229 2arwcatlem1 49627 |
| Copyright terms: Public domain | W3C validator |