Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitrri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitr2i 275 | . 2 ⊢ (𝜒 ↔ 𝜑) |
5 | 1, 4 | bitr3i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nbbn 385 pm5.17 1009 dn1 1055 sb8v 2350 sb8f 2351 dfeumo 2537 2ex2rexrot 3235 sbralie 3406 reu8 3668 sbcimdv 3790 sbcg 3795 unass 4100 ssin 4164 difab 4234 eq0rdv 4338 csbab 4371 ralidm 4442 iunssf 4974 iunss 4975 poirr 5515 elvvv 5662 cnvuni 5795 dfco2 6149 resin 6738 dffv2 6863 dff1o6 7147 fsplit 7957 sbthcl 8882 fiint 9091 rankf 9552 dfac3 9877 dfac5lem3 9881 elznn0 12334 elnn1uz2 12665 lsmspsn 20346 cmbr2i 29958 pjss2i 30042 iuninc 30900 fineqvrep 33064 dffr5 33721 elold 34053 brsset 34191 brtxpsd 34196 ellines 34454 itg2addnclem3 35830 dvasin 35861 cvlsupr3 37358 dihglb2 39356 ifpidg 41098 dfsucon 41130 iscard4 41140 ss2iundf 41267 dffrege76 41547 dffrege99 41570 ntrneikb 41704 disjinfi 42731 |
Copyright terms: Public domain | W3C validator |