| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitrri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitr2i 276 | . 2 ⊢ (𝜒 ↔ 𝜑) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nbbn 383 pm5.17 1013 dn1 1057 sb8v 2351 sb8f 2352 dfeumo 2530 2ex2rexrot 3264 sbralie 3315 sbralieALT 3316 sbralieOLD 3317 ceqsralt 3471 reu8 3693 sbcimdv 3811 sbcg 3815 unass 4123 ssin 4190 difab 4261 eq0rdv 4358 csbab 4391 ralidm 4463 iunssf 4993 iunss 4994 poirr 5539 elvvv 5695 cnvuni 5829 dfco2 6194 resin 6786 dffv2 6918 dff1o6 7212 fsplit 8050 naddasslem1 8612 naddasslem2 8613 sbthcl 9016 fiint 9216 fiintOLD 9217 rankf 9690 dfac3 10015 dfac5lem3 10019 elznn0 12486 elnn1uz2 12826 lsmspsn 20988 elold 27783 elzs2 28292 cmbr2i 31540 pjss2i 31624 iuninc 32504 fineqvrep 35070 dffr5 35727 brsset 35863 brtxpsd 35868 ellines 36126 itg2addnclem3 37653 dvasin 37684 cvlsupr3 39323 dihglb2 41321 oneptri 43230 faosnf0.11b 43400 ifpidg 43464 dfsucon 43496 iscard4 43506 dffrege76 43912 dffrege99 43935 ntrneikb 44067 disjinfi 45170 2arwcatlem1 49580 |
| Copyright terms: Public domain | W3C validator |