Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitrri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitr2i 275 | . 2 ⊢ (𝜒 ↔ 𝜑) |
5 | 1, 4 | bitr3i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nbbn 384 pm5.17 1008 dn1 1054 noranOLD 1529 dfeumo 2537 2ex2rexrot 3180 sbralie 3395 reu8 3663 sbcimdv 3786 sbcg 3791 unass 4096 ssin 4161 difab 4231 eq0rdv 4335 csbab 4368 ralidm 4439 iunssf 4970 iunss 4971 poirr 5506 elvvv 5653 cnvuni 5784 dfco2 6138 resin 6721 dffv2 6845 dff1o6 7128 fsplit 7928 sbthcl 8835 fiint 9021 rankf 9483 dfac3 9808 dfac5lem3 9812 elznn0 12264 elnn1uz2 12594 lsmspsn 20261 cmbr2i 29859 pjss2i 29943 iuninc 30801 fineqvrep 32964 dffr5 33627 elold 33980 brsset 34118 brtxpsd 34123 ellines 34381 itg2addnclem3 35757 dvasin 35788 cvlsupr3 37285 dihglb2 39283 ifpidg 40996 dfsucon 41028 iscard4 41038 ss2iundf 41156 dffrege76 41436 dffrege99 41459 ntrneikb 41593 disjinfi 42620 |
Copyright terms: Public domain | W3C validator |