![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitrri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitr2i 268 | . 2 ⊢ (𝜒 ↔ 𝜑) |
5 | 1, 4 | bitr3i 269 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: nbbn 376 pm5.17 994 dn1 1038 2sb6rfOLD 2418 reu8 3635 unass 4030 ssin 4093 difab 4158 csbab 4271 iunss 4833 poirr 5334 elvvv 5474 cnvuni 5604 dfco2 5935 resin 6463 dffv2 6582 dff1o6 6855 sbthcl 8431 fiint 8586 rankf 9013 dfac3 9337 dfac5lem3 9341 elznn0 11805 elnn1uz2 12136 lsmspsn 19572 cmbr2i 29148 pjss2i 29232 iuninc 30075 dffr5 32479 brsset 32841 brtxpsd 32846 ellines 33104 itg2addnclem3 34364 dvasin 34397 cvlsupr3 35903 dihglb2 37901 ifpidg 39231 ss2iundf 39345 dffrege76 39626 dffrege99 39649 ntrneikb 39785 iunssf 40752 disjinfi 40857 |
Copyright terms: Public domain | W3C validator |