MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrri Structured version   Visualization version   GIF version

Theorem 3bitrri 290
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitri.1 (𝜑𝜓)
3bitri.2 (𝜓𝜒)
3bitri.3 (𝜒𝜃)
Assertion
Ref Expression
3bitrri (𝜃𝜑)

Proof of Theorem 3bitrri
StepHypRef Expression
1 3bitri.3 . 2 (𝜒𝜃)
2 3bitri.1 . . 3 (𝜑𝜓)
3 3bitri.2 . . 3 (𝜓𝜒)
42, 3bitr2i 268 . 2 (𝜒𝜑)
51, 4bitr3i 269 1 (𝜃𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199
This theorem is referenced by:  nbbn  376  pm5.17  994  dn1  1038  2sb6rfOLD  2418  reu8  3635  unass  4030  ssin  4093  difab  4158  csbab  4271  iunss  4833  poirr  5334  elvvv  5474  cnvuni  5604  dfco2  5935  resin  6463  dffv2  6582  dff1o6  6855  sbthcl  8431  fiint  8586  rankf  9013  dfac3  9337  dfac5lem3  9341  elznn0  11805  elnn1uz2  12136  lsmspsn  19572  cmbr2i  29148  pjss2i  29232  iuninc  30075  dffr5  32479  brsset  32841  brtxpsd  32846  ellines  33104  itg2addnclem3  34364  dvasin  34397  cvlsupr3  35903  dihglb2  37901  ifpidg  39231  ss2iundf  39345  dffrege76  39626  dffrege99  39649  ntrneikb  39785  iunssf  40752  disjinfi  40857
  Copyright terms: Public domain W3C validator