| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitrri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitr2i 276 | . 2 ⊢ (𝜒 ↔ 𝜑) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nbbn 383 pm5.17 1013 dn1 1057 sb8v 2351 sb8f 2352 dfeumo 2530 2ex2rexrot 3273 sbralie 3326 sbralieALT 3327 sbralieOLD 3328 ceqsralt 3482 reu8 3704 sbcimdv 3822 sbcg 3826 unass 4135 ssin 4202 difab 4273 eq0rdv 4370 csbab 4403 ralidm 4475 iunssf 5008 iunss 5009 poirr 5558 elvvv 5714 cnvuni 5850 dfco2 6218 resin 6822 dffv2 6956 dff1o6 7250 fsplit 8096 naddasslem1 8658 naddasslem2 8659 sbthcl 9063 fiint 9277 fiintOLD 9278 rankf 9747 dfac3 10074 dfac5lem3 10078 elznn0 12544 elnn1uz2 12884 lsmspsn 20991 elold 27781 elzs2 28287 cmbr2i 31525 pjss2i 31609 iuninc 32489 fineqvrep 35085 dffr5 35741 brsset 35877 brtxpsd 35882 ellines 36140 itg2addnclem3 37667 dvasin 37698 cvlsupr3 39337 dihglb2 41336 oneptri 43246 faosnf0.11b 43416 ifpidg 43480 dfsucon 43512 iscard4 43522 dffrege76 43928 dffrege99 43951 ntrneikb 44083 disjinfi 45186 2arwcatlem1 49584 |
| Copyright terms: Public domain | W3C validator |