![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitrri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitr2i 275 | . 2 ⊢ (𝜒 ↔ 𝜑) |
5 | 1, 4 | bitr3i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nbbn 384 pm5.17 1010 dn1 1056 sb8v 2348 sb8f 2349 dfeumo 2531 2ex2rexrot 3295 sbralie 3354 sbralieALT 3355 ceqsralt 3506 reu8 3729 sbcimdv 3851 sbcg 3856 unass 4166 ssin 4230 difab 4300 eq0rdv 4404 csbab 4437 ralidm 4511 iunssf 5047 iunss 5048 poirr 5600 elvvv 5751 cnvuni 5886 dfco2 6244 resin 6855 dffv2 6986 dff1o6 7272 fsplit 8102 naddasslem1 8692 naddasslem2 8693 sbthcl 9094 fiint 9323 rankf 9788 dfac3 10115 dfac5lem3 10119 elznn0 12572 elnn1uz2 12908 lsmspsn 20694 elold 27361 cmbr2i 30844 pjss2i 30928 iuninc 31787 fineqvrep 34090 dffr5 34719 brsset 34856 brtxpsd 34861 ellines 35119 itg2addnclem3 36536 dvasin 36567 cvlsupr3 38209 dihglb2 40208 oneptri 41996 faosnf0.11b 42168 ifpidg 42232 dfsucon 42264 iscard4 42274 dffrege76 42680 dffrege99 42703 ntrneikb 42835 disjinfi 43881 |
Copyright terms: Public domain | W3C validator |