| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitrri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitr2i 276 | . 2 ⊢ (𝜒 ↔ 𝜑) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nbbn 383 pm5.17 1013 dn1 1057 sb8v 2351 sb8f 2352 dfeumo 2530 2ex2rexrot 3271 sbralie 3323 sbralieALT 3324 sbralieOLD 3325 ceqsralt 3479 reu8 3701 sbcimdv 3819 sbcg 3823 unass 4131 ssin 4198 difab 4269 eq0rdv 4366 csbab 4399 ralidm 4471 iunssf 5003 iunss 5004 poirr 5551 elvvv 5707 cnvuni 5840 dfco2 6206 resin 6804 dffv2 6938 dff1o6 7232 fsplit 8073 naddasslem1 8635 naddasslem2 8636 sbthcl 9040 fiint 9253 fiintOLD 9254 rankf 9723 dfac3 10050 dfac5lem3 10054 elznn0 12520 elnn1uz2 12860 lsmspsn 20967 elold 27757 elzs2 28263 cmbr2i 31498 pjss2i 31582 iuninc 32462 fineqvrep 35058 dffr5 35714 brsset 35850 brtxpsd 35855 ellines 36113 itg2addnclem3 37640 dvasin 37671 cvlsupr3 39310 dihglb2 41309 oneptri 43219 faosnf0.11b 43389 ifpidg 43453 dfsucon 43485 iscard4 43495 dffrege76 43901 dffrege99 43924 ntrneikb 44056 disjinfi 45159 2arwcatlem1 49557 |
| Copyright terms: Public domain | W3C validator |