![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitrri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitrri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitr2i 276 | . 2 ⊢ (𝜒 ↔ 𝜑) |
5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: nbbn 383 pm5.17 1012 dn1 1058 sb8v 2358 sb8f 2359 dfeumo 2540 2ex2rexrot 3304 sbralie 3366 sbralieALT 3367 ceqsralt 3524 reu8 3755 sbcimdv 3878 sbcg 3883 unass 4195 ssin 4260 difab 4329 eq0rdv 4430 csbab 4463 ralidm 4535 iunssf 5067 iunss 5068 poirr 5620 elvvv 5775 cnvuni 5911 dfco2 6276 resin 6884 dffv2 7017 dff1o6 7311 fsplit 8158 naddasslem1 8750 naddasslem2 8751 sbthcl 9161 fiint 9394 fiintOLD 9395 rankf 9863 dfac3 10190 dfac5lem3 10194 elznn0 12654 elnn1uz2 12990 lsmspsn 21106 elold 27926 elzs2 28403 cmbr2i 31628 pjss2i 31712 iuninc 32583 fineqvrep 35071 dffr5 35716 brsset 35853 brtxpsd 35858 ellines 36116 itg2addnclem3 37633 dvasin 37664 cvlsupr3 39300 dihglb2 41299 oneptri 43218 faosnf0.11b 43389 ifpidg 43453 dfsucon 43485 iscard4 43495 dffrege76 43901 dffrege99 43924 ntrneikb 44056 disjinfi 45099 |
Copyright terms: Public domain | W3C validator |