Proof of Theorem zfcndpow
| Step | Hyp | Ref
| Expression |
| 1 | | dtru 5416 |
. . . . 5
⊢ ¬
∀𝑦 𝑦 = 𝑧 |
| 2 | | exnal 1827 |
. . . . 5
⊢
(∃𝑦 ¬
𝑦 = 𝑧 ↔ ¬ ∀𝑦 𝑦 = 𝑧) |
| 3 | 1, 2 | mpbir 231 |
. . . 4
⊢
∃𝑦 ¬ 𝑦 = 𝑧 |
| 4 | | nfe1 2151 |
. . . . 5
⊢
Ⅎ𝑦∃𝑦∀𝑧(∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| 5 | | axpownd 10620 |
. . . . 5
⊢ (¬
𝑦 = 𝑧 → ∃𝑦∀𝑧(∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 6 | 4, 5 | exlimi 2218 |
. . . 4
⊢
(∃𝑦 ¬
𝑦 = 𝑧 → ∃𝑦∀𝑧(∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 7 | 3, 6 | ax-mp 5 |
. . 3
⊢
∃𝑦∀𝑧(∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| 8 | | 19.9v 1984 |
. . . . . . . 8
⊢
(∃𝑥 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
| 9 | | 19.3v 1982 |
. . . . . . . 8
⊢
(∀𝑧 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥) |
| 10 | 8, 9 | imbi12i 350 |
. . . . . . 7
⊢
((∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) |
| 11 | 10 | albii 1819 |
. . . . . 6
⊢
(∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) |
| 12 | 11 | imbi1i 349 |
. . . . 5
⊢
((∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ (∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 13 | 12 | albii 1819 |
. . . 4
⊢
(∀𝑧(∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 14 | 13 | exbii 1848 |
. . 3
⊢
(∃𝑦∀𝑧(∀𝑦(∃𝑥 𝑦 ∈ 𝑧 → ∀𝑧 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 15 | 7, 14 | mpbi 230 |
. 2
⊢
∃𝑦∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| 16 | | elequ1 2116 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| 17 | | elequ1 2116 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 18 | 16, 17 | imbi12d 344 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) ↔ (𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥))) |
| 19 | 18 | cbvalvw 2036 |
. . . . 5
⊢
(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) |
| 20 | 19 | imbi1i 349 |
. . . 4
⊢
((∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ (∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 21 | 20 | albii 1819 |
. . 3
⊢
(∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 22 | 21 | exbii 1848 |
. 2
⊢
(∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 23 | 15, 22 | mpbir 231 |
1
⊢
∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |