MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brprcneu Structured version   Visualization version   GIF version

Theorem brprcneu 6637
Description: If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. (Contributed by Scott Fenton, 7-Oct-2017.)
Assertion
Ref Expression
brprcneu 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem brprcneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dtru 5236 . . . . . . . . 9 ¬ ∀𝑦 𝑦 = 𝑥
2 exnal 1828 . . . . . . . . . 10 (∃𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦 𝑥 = 𝑦)
3 equcom 2025 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
43albii 1821 . . . . . . . . . 10 (∀𝑦 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥)
52, 4xchbinx 337 . . . . . . . . 9 (∃𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦 𝑦 = 𝑥)
61, 5mpbir 234 . . . . . . . 8 𝑦 ¬ 𝑥 = 𝑦
76jctr 528 . . . . . . 7 (∅ ∈ 𝐹 → (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
8 19.42v 1954 . . . . . . 7 (∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
97, 8sylibr 237 . . . . . 6 (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))
10 opprc1 4789 . . . . . . . 8 𝐴 ∈ V → ⟨𝐴, 𝑥⟩ = ∅)
1110eleq1d 2874 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
12 opprc1 4789 . . . . . . . . . . . 12 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
1312eleq1d 2874 . . . . . . . . . . 11 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
1411, 13anbi12d 633 . . . . . . . . . 10 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹)))
15 anidm 568 . . . . . . . . . 10 ((∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹) ↔ ∅ ∈ 𝐹)
1614, 15syl6bb 290 . . . . . . . . 9 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ ∅ ∈ 𝐹))
1716anbi1d 632 . . . . . . . 8 𝐴 ∈ V → (((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1817exbidv 1922 . . . . . . 7 𝐴 ∈ V → (∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1911, 18imbi12d 348 . . . . . 6 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)) ↔ (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))))
209, 19mpbiri 261 . . . . 5 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)))
21 df-br 5031 . . . . 5 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
22 df-br 5031 . . . . . . . 8 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
2321, 22anbi12i 629 . . . . . . 7 ((𝐴𝐹𝑥𝐴𝐹𝑦) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
2423anbi1i 626 . . . . . 6 (((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2524exbii 1849 . . . . 5 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2620, 21, 253imtr4g 299 . . . 4 𝐴 ∈ V → (𝐴𝐹𝑥 → ∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
2726eximdv 1918 . . 3 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
28 exnal 1828 . . . 4 (∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
29 exanali 1860 . . . . 5 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3029exbii 1849 . . . 4 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
31 breq2 5034 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝐹𝑥𝐴𝐹𝑦))
3231mo4 2625 . . . . 5 (∃*𝑥 𝐴𝐹𝑥 ↔ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3332notbii 323 . . . 4 (¬ ∃*𝑥 𝐴𝐹𝑥 ↔ ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3428, 30, 333bitr4ri 307 . . 3 (¬ ∃*𝑥 𝐴𝐹𝑥 ↔ ∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
3527, 34syl6ibr 255 . 2 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
36 df-eu 2629 . . . 4 (∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3736notbii 323 . . 3 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
38 imnan 403 . . 3 ((∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥) ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3937, 38bitr4i 281 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
4035, 39sylibr 237 1 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wal 1536  wex 1781  wcel 2111  ∃*wmo 2596  ∃!weu 2628  Vcvv 3441  c0 4243  cop 4531   class class class wbr 5030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174  ax-pow 5231
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031
This theorem is referenced by:  fvprc  6638  eubrv  43627
  Copyright terms: Public domain W3C validator