| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dveel2ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of dveel2 2461 using ax-c16 38880 instead of ax-5 1910. (Contributed by NM, 10-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dveel2ALT | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax5el 38925 | . 2 ⊢ (𝑧 ∈ 𝑤 → ∀𝑥 𝑧 ∈ 𝑤) | |
| 2 | ax5el 38925 | . 2 ⊢ (𝑧 ∈ 𝑦 → ∀𝑤 𝑧 ∈ 𝑦) | |
| 3 | elequ2 2124 | . 2 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 1, 2, 3 | dvelimh 2449 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 ax-c14 38879 ax-c16 38880 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |