Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dveel2ALT Structured version   Visualization version   GIF version

Theorem dveel2ALT 38921
Description: Alternate proof of dveel2 2465 using ax-c16 38874 instead of ax-5 1908. (Contributed by NM, 10-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveel2ALT (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel2ALT
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax5el 38919 . 2 (𝑧𝑤 → ∀𝑥 𝑧𝑤)
2 ax5el 38919 . 2 (𝑧𝑦 → ∀𝑤 𝑧𝑦)
3 elequ2 2121 . 2 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
41, 2, 3dvelimh 2453 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375  ax-c14 38873  ax-c16 38874
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator