Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dveel2ALT Structured version   Visualization version   GIF version

Theorem dveel2ALT 38637
Description: Alternate proof of dveel2 2456 using ax-c16 38590 instead of ax-5 1906. (Contributed by NM, 10-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveel2ALT (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel2ALT
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax5el 38635 . 2 (𝑧𝑤 → ∀𝑥 𝑧𝑤)
2 ax5el 38635 . 2 (𝑧𝑦 → ∀𝑤 𝑧𝑦)
3 elequ2 2114 . 2 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
41, 2, 3dvelimh 2444 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2366  ax-c14 38589  ax-c16 38590
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-nf 1779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator