![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvelimh | Structured version Visualization version GIF version |
Description: Version of dvelim 2459 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out dvelimhw 2351 for a version requiring fewer axioms. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvelimh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
dvelimh.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
dvelimh.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dvelimh | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimh.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nf5i 2146 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | dvelimh.2 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
4 | 3 | nf5i 2146 | . . 3 ⊢ Ⅎ𝑧𝜓 |
5 | dvelimh.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | dvelimf 2456 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
7 | 6 | nf5rd 2197 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 |
This theorem is referenced by: dvelim 2459 dveeq1-o16 38892 dveel2ALT 38895 ax6e2nd 44529 ax6e2ndVD 44879 ax6e2ndALT 44901 |
Copyright terms: Public domain | W3C validator |