| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvelimh | Structured version Visualization version GIF version | ||
| Description: Version of dvelim 2456 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2377. Check out dvelimhw 2347 for a version requiring fewer axioms. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvelimh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| dvelimh.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
| dvelimh.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dvelimh | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimh.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | nf5i 2146 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 3 | dvelimh.2 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 4 | 3 | nf5i 2146 | . . 3 ⊢ Ⅎ𝑧𝜓 |
| 5 | dvelimh.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | dvelimf 2453 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
| 7 | 6 | nf5rd 2196 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: dvelim 2456 dveeq1-o16 38937 dveel2ALT 38940 ax6e2nd 44578 ax6e2ndVD 44928 ax6e2ndALT 44950 |
| Copyright terms: Public domain | W3C validator |