![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvelimh | Structured version Visualization version GIF version |
Description: Version of dvelim 2430 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
Ref | Expression |
---|---|
dvelimh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
dvelimh.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
dvelimh.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dvelimh | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimh.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nf5i 2117 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | dvelimh.2 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
4 | 3 | nf5i 2117 | . . 3 ⊢ Ⅎ𝑧𝜓 |
5 | dvelimh.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | dvelimf 2427 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
7 | 6 | nf5rd 2161 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∀wal 1520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 |
This theorem is referenced by: dvelim 2430 dveeq1-o16 35629 dveel2ALT 35632 ax6e2nd 40457 ax6e2ndVD 40807 ax6e2ndALT 40829 |
Copyright terms: Public domain | W3C validator |