| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvelimalcasei | Structured version Visualization version GIF version | ||
| Description: Eliminate a disjoint variable condition from a universally quantified statement using cases. Inference form of dvelimalcased 35023. (Contributed by BTernaryTau, 31-Jul-2025.) |
| Ref | Expression |
|---|---|
| dvelimalcasei.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
| dvelimalcasei.2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜒) |
| dvelimalcasei.3 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝜑 → 𝜒))) |
| dvelimalcasei.4 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜓 → 𝜒)) |
| dvelimalcasei.5 | ⊢ ∀𝑧𝜑 |
| dvelimalcasei.6 | ⊢ ∀𝑥𝜓 |
| Ref | Expression |
|---|---|
| dvelimalcasei | ⊢ ∀𝑥𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1803 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfvd 1914 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧⊤) | |
| 3 | dvelimalcasei.1 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜑) |
| 5 | dvelimalcasei.2 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜒) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑧𝜒) |
| 7 | dvelimalcasei.3 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝜑 → 𝜒))) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑧 = 𝑥 → (𝜑 → 𝜒))) |
| 9 | dvelimalcasei.4 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜓 → 𝜒)) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ∀𝑥 𝑥 = 𝑦) → (𝜓 → 𝜒)) |
| 11 | dvelimalcasei.5 | . . . 4 ⊢ ∀𝑧𝜑 | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (⊤ → ∀𝑧𝜑) |
| 13 | dvelimalcasei.6 | . . . 4 ⊢ ∀𝑥𝜓 | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (⊤ → ∀𝑥𝜓) |
| 15 | 1, 2, 4, 6, 8, 10, 12, 14 | dvelimalcased 35023 | . 2 ⊢ (⊤ → ∀𝑥𝜒) |
| 16 | 15 | mptru 1546 | 1 ⊢ ∀𝑥𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |