Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvelimexcased Structured version   Visualization version   GIF version

Theorem dvelimexcased 35045
Description: Eliminate a disjoint variable condition from an existentially quantified statement using cases. (Contributed by BTernaryTau, 31-Jul-2025.)
Hypotheses
Ref Expression
dvelimexcased.1 𝑥𝜑
dvelimexcased.2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
dvelimexcased.3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
dvelimexcased.4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑧𝜃)
dvelimexcased.5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑧 = 𝑥 → (𝜓𝜃)))
dvelimexcased.6 ((𝜑 ∧ ∀𝑥 𝑥 = 𝑦) → (𝜒𝜃))
dvelimexcased.7 (𝜑 → ∃𝑧𝜓)
dvelimexcased.8 (𝜑 → ∃𝑥𝜒)
Assertion
Ref Expression
dvelimexcased (𝜑 → ∃𝑥𝜃)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝜃(𝑥,𝑦,𝑧)

Proof of Theorem dvelimexcased
StepHypRef Expression
1 dvelimexcased.8 . . 3 (𝜑 → ∃𝑥𝜒)
2 dvelimexcased.1 . . . . . 6 𝑥𝜑
3 nfa1 2147 . . . . . 6 𝑥𝑥 𝑥 = 𝑦
42, 3nfan 1898 . . . . 5 𝑥(𝜑 ∧ ∀𝑥 𝑥 = 𝑦)
5 dvelimexcased.6 . . . . 5 ((𝜑 ∧ ∀𝑥 𝑥 = 𝑦) → (𝜒𝜃))
64, 5eximd 2212 . . . 4 ((𝜑 ∧ ∀𝑥 𝑥 = 𝑦) → (∃𝑥𝜒 → ∃𝑥𝜃))
76ex 412 . . 3 (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜒 → ∃𝑥𝜃)))
81, 7mpid 44 . 2 (𝜑 → (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝜃))
9 dvelimexcased.7 . . 3 (𝜑 → ∃𝑧𝜓)
10 nfv 1913 . . . . . 6 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
11 dvelimexcased.2 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
1210, 11nfan1c 35041 . . . . 5 𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
13 nfna1 2148 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
142, 13nfan 1898 . . . . 5 𝑥(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
15 dvelimexcased.3 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
16 dvelimexcased.4 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑧𝜃)
17 dvelimexcased.5 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑧 = 𝑥 → (𝜓𝜃)))
1812, 14, 15, 16, 17cbvex1v 35042 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑧𝜓 → ∃𝑥𝜃))
1918ex 412 . . 3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜓 → ∃𝑥𝜃)))
209, 19mpid 44 . 2 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝜃))
218, 20pm2.61d 179 1 (𝜑 → ∃𝑥𝜃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2136  ax-11 2153  ax-12 2173
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782
This theorem is referenced by:  dvelimexcasei  35046
  Copyright terms: Public domain W3C validator