Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1917 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1897. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: cbvaldw 2335 cbvald 2407 cbvaldva 2409 cbvexdva 2410 sbiedv 2508 nfmodv 2559 nfabdw 2930 vtoclgft 3492 vtocldOLD 3495 sbciedOLD 3762 nfunid 4845 nfopabd 5142 copsexgw 5404 nfiotadw 6394 iota2d 6421 iota2 6422 riota5f 7261 oprabidw 7306 opiota 7899 mpoxopoveq 8035 nfttrcld 9468 axrepndlem1 10348 axunndlem1 10351 fproddivf 15697 xrofsup 31090 bj-cbvaldvav 34985 bj-cbvexdvav 34986 opelopabbv 35314 brabd 35319 cbveud 35543 cbvreud 35544 fvineqsneu 35582 wl-mo2t 35730 wl-sb8eut 35732 riotasv2d 36971 cdleme42b 38492 dihvalcqpre 39249 mapdheq 39742 hdmap1eq 39815 hdmapval2lem 39845 |
Copyright terms: Public domain | W3C validator |