![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1912 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1892. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1912 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-nf 1781 |
This theorem is referenced by: cbvaldw 2339 cbvald 2410 cbvaldva 2412 cbvexdva 2413 sbiedv 2507 nfmodv 2557 nfabdw 2925 cbvexeqsetf 3493 sbciedOLD 3838 nfunid 4918 nfopabd 5216 copsexgw 5501 nfiotadw 6519 iota2d 6551 iota2 6552 riota5f 7416 oprabidw 7462 opiota 8083 mpoxopoveq 8243 nfttrcld 9748 axrepndlem1 10630 axunndlem1 10633 fproddivf 16020 xrofsup 32778 dvelimalcasei 35069 dvelimexcasei 35071 axsepg2 35075 axsepg2ALT 35076 axnulg 35085 bj-cbvaldvav 36786 bj-cbvexdvav 36787 opelopabbv 37126 brabd 37131 cbveud 37355 cbvreud 37356 fvineqsneu 37394 wl-mo2t 37556 wl-sb8eut 37559 wl-sb8eutv 37560 wl-issetft 37563 riotasv2d 38939 cdleme42b 40461 dihvalcqpre 41218 mapdheq 41711 hdmap1eq 41784 hdmapval2lem 41814 |
Copyright terms: Public domain | W3C validator |