| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version | ||
| Description: nfv 1914 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1894. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvaldw 2339 cbvald 2411 cbvaldva 2413 cbvexdva 2414 sbiedv 2508 nfmodv 2558 nfabdw 2920 cbvexeqsetf 3474 nfunid 4889 nfopabd 5187 copsexgw 5465 nfiotadw 6487 iota2d 6519 iota2 6520 riota5f 7390 oprabidw 7436 opiota 8058 mpoxopoveq 8218 nfttrcld 9724 axrepndlem1 10606 axunndlem1 10609 fproddivf 16003 xrofsup 32744 dvelimalcasei 35107 dvelimexcasei 35109 axsepg2 35113 axsepg2ALT 35114 axnulg 35123 bj-cbvaldvav 36821 bj-cbvexdvav 36822 opelopabbv 37161 brabd 37166 cbveud 37390 cbvreud 37391 fvineqsneu 37429 wl-mo2t 37593 wl-sb8eut 37596 wl-sb8eutv 37597 wl-issetft 37600 riotasv2d 38975 cdleme42b 40497 dihvalcqpre 41254 mapdheq 41747 hdmap1eq 41820 hdmapval2lem 41850 |
| Copyright terms: Public domain | W3C validator |