| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version | ||
| Description: nfv 1914 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1894. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvaldw 2336 cbvald 2405 cbvaldva 2407 cbvexdva 2408 sbiedv 2502 nfmodv 2552 nfabdw 2913 cbvexeqsetf 3462 nfunid 4877 nfopabd 5175 copsexgw 5450 nfiotadw 6467 iota2d 6499 iota2 6500 riota5f 7372 oprabidw 7418 opiota 8038 mpoxopoveq 8198 nfttrcld 9663 axrepndlem1 10545 axunndlem1 10548 fproddivf 15953 xrofsup 32690 dvelimalcasei 35066 dvelimexcasei 35068 axsepg2 35072 axsepg2ALT 35073 axnulg 35082 bj-cbvaldvav 36791 bj-cbvexdvav 36792 opelopabbv 37131 brabd 37136 cbveud 37360 cbvreud 37361 fvineqsneu 37399 wl-mo2t 37563 wl-sb8eut 37566 wl-sb8eutv 37567 wl-issetft 37570 riotasv2d 38950 cdleme42b 40472 dihvalcqpre 41229 mapdheq 41722 hdmap1eq 41795 hdmapval2lem 41825 |
| Copyright terms: Public domain | W3C validator |