![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1913 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1893. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: cbvaldw 2344 cbvald 2415 cbvaldva 2417 cbvexdva 2418 sbiedv 2512 nfmodv 2562 nfabdw 2932 cbvexeqsetf 3503 sbciedOLD 3851 nfunid 4937 nfopabd 5234 copsexgw 5510 nfiotadw 6528 iota2d 6561 iota2 6562 riota5f 7433 oprabidw 7479 opiota 8100 mpoxopoveq 8260 nfttrcld 9779 axrepndlem1 10661 axunndlem1 10664 fproddivf 16035 xrofsup 32774 dvelimalcasei 35052 dvelimexcasei 35054 axsepg2 35058 axsepg2ALT 35059 axnulg 35068 bj-cbvaldvav 36769 bj-cbvexdvav 36770 opelopabbv 37109 brabd 37114 cbveud 37338 cbvreud 37339 fvineqsneu 37377 wl-mo2t 37529 wl-sb8eut 37532 wl-sb8eutv 37533 wl-issetft 37536 riotasv2d 38913 cdleme42b 40435 dihvalcqpre 41192 mapdheq 41685 hdmap1eq 41758 hdmapval2lem 41788 |
Copyright terms: Public domain | W3C validator |