| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version | ||
| Description: nfv 1915 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1895. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: cbvaldw 2340 cbvald 2409 cbvaldva 2411 cbvexdva 2412 sbiedv 2506 nfmodv 2556 nfabdw 2917 cbvexeqsetf 3452 nfunid 4866 nfopabd 5163 copsexgw 5435 nfiotadw 6448 iota2d 6477 iota2 6478 riota5f 7340 oprabidw 7386 opiota 8000 mpoxopoveq 8158 nfttrcld 9611 axrepndlem1 10494 axunndlem1 10497 fproddivf 15901 nfchnd 18525 xrofsup 32775 dvelimalcasei 35160 dvelimexcasei 35162 axsepg2 35166 axsepg2ALT 35167 axnulg 35191 bj-cbvaldvav 36920 bj-cbvexdvav 36921 opelopabbv 37260 brabd 37265 cbveud 37489 cbvreud 37490 fvineqsneu 37528 wl-mo2t 37692 wl-sb8eut 37695 wl-sb8eutv 37696 wl-issetft 37699 riotasv2d 39129 cdleme42b 40650 dihvalcqpre 41407 mapdheq 41900 hdmap1eq 41973 hdmapval2lem 42003 |
| Copyright terms: Public domain | W3C validator |