![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1917 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1897. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 |
This theorem is referenced by: cbvaldw 2334 cbvald 2406 cbvaldva 2408 cbvexdva 2409 sbiedv 2503 nfmodv 2553 nfabdw 2926 vtoclgft 3540 vtocldOLD 3543 sbciedOLD 3823 nfunid 4914 nfopabd 5216 copsexgw 5490 nfiotadw 6498 iota2d 6531 iota2 6532 riota5f 7393 oprabidw 7439 opiota 8044 mpoxopoveq 8203 nfttrcld 9704 axrepndlem1 10586 axunndlem1 10589 fproddivf 15930 xrofsup 31975 bj-cbvaldvav 35676 bj-cbvexdvav 35677 opelopabbv 36019 brabd 36024 cbveud 36248 cbvreud 36249 fvineqsneu 36287 wl-mo2t 36435 wl-sb8eut 36437 wl-issetft 36439 riotasv2d 37822 cdleme42b 39344 dihvalcqpre 40101 mapdheq 40594 hdmap1eq 40667 hdmapval2lem 40697 |
Copyright terms: Public domain | W3C validator |