![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1918 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1898. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: cbvaldw 2335 cbvald 2407 cbvaldva 2409 cbvexdva 2410 sbiedv 2504 nfmodv 2554 nfabdw 2927 vtoclgft 3541 vtocldOLD 3544 sbciedOLD 3824 nfunid 4915 nfopabd 5217 copsexgw 5491 nfiotadw 6499 iota2d 6532 iota2 6533 riota5f 7394 oprabidw 7440 opiota 8045 mpoxopoveq 8204 nfttrcld 9705 axrepndlem1 10587 axunndlem1 10590 fproddivf 15931 xrofsup 31980 bj-cbvaldvav 35681 bj-cbvexdvav 35682 opelopabbv 36024 brabd 36029 cbveud 36253 cbvreud 36254 fvineqsneu 36292 wl-mo2t 36440 wl-sb8eut 36442 wl-issetft 36444 riotasv2d 37827 cdleme42b 39349 dihvalcqpre 40106 mapdheq 40599 hdmap1eq 40672 hdmapval2lem 40702 |
Copyright terms: Public domain | W3C validator |