Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1916 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1896. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-nf 1785 |
This theorem is referenced by: cbvaldw 2334 cbvald 2406 cbvaldva 2408 cbvexdva 2409 sbiedv 2507 nfmodv 2558 nfabdw 2928 vtoclgft 3501 vtocldOLD 3504 sbciedOLD 3772 nfunid 4856 nfopabd 5155 copsexgw 5423 nfiotadw 6421 iota2d 6454 iota2 6455 riota5f 7303 oprabidw 7348 opiota 7946 mpoxopoveq 8084 nfttrcld 9546 axrepndlem1 10428 axunndlem1 10431 fproddivf 15776 xrofsup 31225 bj-cbvaldvav 35059 bj-cbvexdvav 35060 opelopabbv 35386 brabd 35391 cbveud 35615 cbvreud 35616 fvineqsneu 35654 wl-mo2t 35802 wl-sb8eut 35804 riotasv2d 37191 cdleme42b 38713 dihvalcqpre 39470 mapdheq 39963 hdmap1eq 40036 hdmapval2lem 40066 |
Copyright terms: Public domain | W3C validator |