Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1915 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1895. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-ex 1782 df-nf 1786 |
This theorem is referenced by: cbvaldw 2347 cbvald 2417 cbvaldva 2419 cbvexdva 2420 sbiedv 2523 nfmodv 2577 vtoclgft 3472 vtocldOLD 3476 sbcied 3741 nfunid 4807 copsexgw 5352 nfiotadw 6301 iota2d 6327 iota2 6328 riota5f 7141 oprabidw 7186 opiota 7766 mpoxopoveq 7900 axrepndlem1 10057 axunndlem1 10060 fproddivf 15394 xrofsup 30618 bj-cbvaldvav 34547 bj-cbvexdvav 34548 opelopabbv 34864 brabd 34869 cbveud 35095 cbvreud 35096 fvineqsneu 35134 wl-mo2t 35282 wl-sb8eut 35284 riotasv2d 36559 cdleme42b 38080 dihvalcqpre 38837 mapdheq 39330 hdmap1eq 39403 hdmapval2lem 39433 |
Copyright terms: Public domain | W3C validator |