| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version | ||
| Description: nfv 1914 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1894. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvaldw 2336 cbvald 2406 cbvaldva 2408 cbvexdva 2409 sbiedv 2503 nfmodv 2553 nfabdw 2914 cbvexeqsetf 3465 nfunid 4880 nfopabd 5178 copsexgw 5453 nfiotadw 6470 iota2d 6502 iota2 6503 riota5f 7375 oprabidw 7421 opiota 8041 mpoxopoveq 8201 nfttrcld 9670 axrepndlem1 10552 axunndlem1 10555 fproddivf 15960 xrofsup 32697 dvelimalcasei 35073 dvelimexcasei 35075 axsepg2 35079 axsepg2ALT 35080 axnulg 35089 bj-cbvaldvav 36798 bj-cbvexdvav 36799 opelopabbv 37138 brabd 37143 cbveud 37367 cbvreud 37368 fvineqsneu 37406 wl-mo2t 37570 wl-sb8eut 37573 wl-sb8eutv 37574 wl-issetft 37577 riotasv2d 38957 cdleme42b 40479 dihvalcqpre 41236 mapdheq 41729 hdmap1eq 41802 hdmapval2lem 41832 |
| Copyright terms: Public domain | W3C validator |