Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version |
Description: nfv 1918 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1898. (Contributed by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbvaldw 2337 cbvald 2407 cbvaldva 2409 cbvexdva 2410 sbiedv 2508 nfmodv 2559 nfabdw 2929 vtoclgft 3482 vtocldOLD 3485 sbciedOLD 3757 nfunid 4842 nfopabd 5138 copsexgw 5398 nfiotadw 6379 iota2d 6406 iota2 6407 riota5f 7241 oprabidw 7286 opiota 7872 mpoxopoveq 8006 axrepndlem1 10279 axunndlem1 10282 fproddivf 15625 xrofsup 30992 nfttrcld 33696 bj-cbvaldvav 34912 bj-cbvexdvav 34913 opelopabbv 35241 brabd 35246 cbveud 35470 cbvreud 35471 fvineqsneu 35509 wl-mo2t 35657 wl-sb8eut 35659 riotasv2d 36898 cdleme42b 38419 dihvalcqpre 39176 mapdheq 39669 hdmap1eq 39742 hdmapval2lem 39772 |
Copyright terms: Public domain | W3C validator |