| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version | ||
| Description: nfv 1915 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1895. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: cbvaldw 2338 cbvald 2407 cbvaldva 2409 cbvexdva 2410 sbiedv 2504 nfmodv 2554 nfabdw 2916 cbvexeqsetf 3451 nfunid 4860 nfopabd 5154 copsexgw 5425 nfiotadw 6435 iota2d 6464 iota2 6465 riota5f 7326 oprabidw 7372 opiota 7986 mpoxopoveq 8144 nfttrcld 9595 axrepndlem1 10478 axunndlem1 10481 fproddivf 15889 nfchnd 18512 xrofsup 32742 dvelimalcasei 35080 dvelimexcasei 35082 axsepg2 35086 axsepg2ALT 35087 axnulg 35111 bj-cbvaldvav 36837 bj-cbvexdvav 36838 opelopabbv 37177 brabd 37182 cbveud 37406 cbvreud 37407 fvineqsneu 37445 wl-mo2t 37609 wl-sb8eut 37612 wl-sb8eutv 37613 wl-issetft 37616 riotasv2d 38996 cdleme42b 40517 dihvalcqpre 41274 mapdheq 41767 hdmap1eq 41840 hdmapval2lem 41870 |
| Copyright terms: Public domain | W3C validator |