| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version | ||
| Description: nfv 1914 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1894. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvaldw 2336 cbvald 2405 cbvaldva 2407 cbvexdva 2408 sbiedv 2502 nfmodv 2552 nfabdw 2913 cbvexeqsetf 3453 nfunid 4867 nfopabd 5163 copsexgw 5437 nfiotadw 6445 iota2d 6474 iota2 6475 riota5f 7338 oprabidw 7384 opiota 8001 mpoxopoveq 8159 nfttrcld 9625 axrepndlem1 10505 axunndlem1 10508 fproddivf 15913 xrofsup 32729 dvelimalcasei 35062 dvelimexcasei 35064 axsepg2 35068 axsepg2ALT 35069 axnulg 35078 bj-cbvaldvav 36796 bj-cbvexdvav 36797 opelopabbv 37136 brabd 37141 cbveud 37365 cbvreud 37366 fvineqsneu 37404 wl-mo2t 37568 wl-sb8eut 37571 wl-sb8eutv 37572 wl-issetft 37575 riotasv2d 38955 cdleme42b 40477 dihvalcqpre 41234 mapdheq 41727 hdmap1eq 41800 hdmapval2lem 41830 |
| Copyright terms: Public domain | W3C validator |