| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvd | Structured version Visualization version GIF version | ||
| Description: nfv 1914 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1894. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfvd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvaldw 2336 cbvald 2405 cbvaldva 2407 cbvexdva 2408 sbiedv 2502 nfmodv 2552 nfabdw 2913 cbvexeqsetf 3459 nfunid 4873 nfopabd 5170 copsexgw 5445 nfiotadw 6455 iota2d 6487 iota2 6488 riota5f 7354 oprabidw 7400 opiota 8017 mpoxopoveq 8175 nfttrcld 9639 axrepndlem1 10521 axunndlem1 10524 fproddivf 15929 xrofsup 32663 dvelimalcasei 35039 dvelimexcasei 35041 axsepg2 35045 axsepg2ALT 35046 axnulg 35055 bj-cbvaldvav 36764 bj-cbvexdvav 36765 opelopabbv 37104 brabd 37109 cbveud 37333 cbvreud 37334 fvineqsneu 37372 wl-mo2t 37536 wl-sb8eut 37539 wl-sb8eutv 37540 wl-issetft 37543 riotasv2d 38923 cdleme42b 40445 dihvalcqpre 41202 mapdheq 41695 hdmap1eq 41768 hdmapval2lem 41798 |
| Copyright terms: Public domain | W3C validator |