Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brxrn2 | Structured version Visualization version GIF version |
Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.) |
Ref | Expression |
---|---|
brxrn2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnss3v 36502 | . . . . . . 7 ⊢ (𝑅 ⋉ 𝑆) ⊆ (V × (V × V)) | |
2 | 1 | brel 5652 | . . . . . 6 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
3 | 2 | simprd 496 | . . . . 5 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
4 | elvv 5661 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) |
6 | 5 | pm4.71ri 561 | . . 3 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) |
7 | 19.41vv 1954 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) | |
8 | breq2 5078 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) | |
9 | 8 | pm5.32i 575 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) |
10 | 9 | 2exbii 1851 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) |
11 | 6, 7, 10 | 3bitr2i 299 | . 2 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) |
12 | brxrn 36504 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
13 | 12 | el3v23 36377 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
14 | 13 | anbi2d 629 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)))) |
15 | 3anass 1094 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
16 | 14, 15 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
17 | 16 | 2exbidv 1927 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
18 | 11, 17 | syl5bb 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 〈cop 4567 class class class wbr 5074 × cxp 5587 ⋉ cxrn 36332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-xrn 36501 |
This theorem is referenced by: dfxrn2 36506 elecxrn 36516 inxpxrn 36521 br1cnvxrn2 36522 |
Copyright terms: Public domain | W3C validator |