| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brxrn2 | Structured version Visualization version GIF version | ||
| Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.) |
| Ref | Expression |
|---|---|
| brxrn2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnss3v 38354 | . . . . . . 7 ⊢ (𝑅 ⋉ 𝑆) ⊆ (V × (V × V)) | |
| 2 | 1 | brel 5703 | . . . . . 6 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
| 3 | 2 | simprd 495 | . . . . 5 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
| 4 | elvv 5713 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) |
| 6 | 5 | pm4.71ri 560 | . . 3 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) |
| 7 | 19.41vv 1950 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) | |
| 8 | breq2 5111 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) | |
| 9 | 8 | pm5.32i 574 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) |
| 10 | 9 | 2exbii 1849 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) |
| 11 | 6, 7, 10 | 3bitr2i 299 | . 2 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) |
| 12 | brxrn 38356 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
| 13 | 12 | el3v23 38216 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| 14 | 13 | anbi2d 630 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)))) |
| 15 | 3anass 1094 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
| 16 | 14, 15 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| 17 | 16 | 2exbidv 1924 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| 18 | 11, 17 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 × cxp 5636 ⋉ cxrn 38168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-xrn 38353 |
| This theorem is referenced by: dfxrn2 38358 elecxrn 38372 inxpxrn 38381 br1cnvxrn2 38382 |
| Copyright terms: Public domain | W3C validator |