![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brxrn2 | Structured version Visualization version GIF version |
Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.) |
Ref | Expression |
---|---|
brxrn2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnss3v 37753 | . . . . . . 7 ⊢ (𝑅 ⋉ 𝑆) ⊆ (V × (V × V)) | |
2 | 1 | brel 5734 | . . . . . 6 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
3 | 2 | simprd 495 | . . . . 5 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
4 | elvv 5743 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩) |
6 | 5 | pm4.71ri 560 | . . 3 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) |
7 | 19.41vv 1946 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) | |
8 | breq2 5145 | . . . . 5 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) | |
9 | 8 | pm5.32i 574 | . . . 4 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) |
10 | 9 | 2exbii 1843 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) |
11 | 6, 7, 10 | 3bitr2i 299 | . 2 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) |
12 | brxrn 37755 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
13 | 12 | el3v23 37603 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
14 | 13 | anbi2d 628 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)))) |
15 | 3anass 1092 | . . . 4 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
16 | 14, 15 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
17 | 16 | 2exbidv 1919 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
18 | 11, 17 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 class class class wbr 5141 × cxp 5667 ⋉ cxrn 37553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7971 df-2nd 7972 df-xrn 37752 |
This theorem is referenced by: dfxrn2 37757 elecxrn 37767 inxpxrn 37776 br1cnvxrn2 37777 |
Copyright terms: Public domain | W3C validator |