Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brxrn2 Structured version   Visualization version   GIF version

Theorem brxrn2 37756
Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.)
Assertion
Ref Expression
brxrn2 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦

Proof of Theorem brxrn2
StepHypRef Expression
1 xrnss3v 37753 . . . . . . 7 (𝑅𝑆) ⊆ (V × (V × V))
21brel 5734 . . . . . 6 (𝐴(𝑅𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V)))
32simprd 495 . . . . 5 (𝐴(𝑅𝑆)𝐵𝐵 ∈ (V × V))
4 elvv 5743 . . . . 5 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4sylib 217 . . . 4 (𝐴(𝑅𝑆)𝐵 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
65pm4.71ri 560 . . 3 (𝐴(𝑅𝑆)𝐵 ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
7 19.41vv 1946 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
8 breq2 5145 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
98pm5.32i 574 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
1092exbii 1843 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
116, 7, 103bitr2i 299 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
12 brxrn 37755 . . . . . 6 ((𝐴𝑉𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1312el3v23 37603 . . . . 5 (𝐴𝑉 → (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1413anbi2d 628 . . . 4 (𝐴𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦))))
15 3anass 1092 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1614, 15bitr4di 289 . . 3 (𝐴𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
17162exbidv 1919 . 2 (𝐴𝑉 → (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
1811, 17bitrid 283 1 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  Vcvv 3468  cop 4629   class class class wbr 5141   × cxp 5667  cxrn 37553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7971  df-2nd 7972  df-xrn 37752
This theorem is referenced by:  dfxrn2  37757  elecxrn  37767  inxpxrn  37776  br1cnvxrn2  37777
  Copyright terms: Public domain W3C validator