![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brxrn2 | Structured version Visualization version GIF version |
Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.) |
Ref | Expression |
---|---|
brxrn2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnss3v 36863 | . . . . . . 7 ⊢ (𝑅 ⋉ 𝑆) ⊆ (V × (V × V)) | |
2 | 1 | brel 5702 | . . . . . 6 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
3 | 2 | simprd 497 | . . . . 5 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
4 | elvv 5711 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩) |
6 | 5 | pm4.71ri 562 | . . 3 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) |
7 | 19.41vv 1955 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵)) | |
8 | breq2 5114 | . . . . 5 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) | |
9 | 8 | pm5.32i 576 | . . . 4 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) |
10 | 9 | 2exbii 1852 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) |
11 | 6, 7, 10 | 3bitr2i 299 | . 2 ⊢ (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩)) |
12 | brxrn 36865 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
13 | 12 | el3v23 36712 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
14 | 13 | anbi2d 630 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)))) |
15 | 3anass 1096 | . . . 4 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
16 | 14, 15 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
17 | 16 | 2exbidv 1928 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⋉ 𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
18 | 11, 17 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3448 ⟨cop 4597 class class class wbr 5110 × cxp 5636 ⋉ cxrn 36662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-fo 6507 df-fv 6509 df-1st 7926 df-2nd 7927 df-xrn 36862 |
This theorem is referenced by: dfxrn2 36867 elecxrn 36877 inxpxrn 36886 br1cnvxrn2 36887 |
Copyright terms: Public domain | W3C validator |