Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brxrn2 Structured version   Visualization version   GIF version

Theorem brxrn2 36866
Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.)
Assertion
Ref Expression
brxrn2 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦

Proof of Theorem brxrn2
StepHypRef Expression
1 xrnss3v 36863 . . . . . . 7 (𝑅𝑆) ⊆ (V × (V × V))
21brel 5702 . . . . . 6 (𝐴(𝑅𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V)))
32simprd 497 . . . . 5 (𝐴(𝑅𝑆)𝐵𝐵 ∈ (V × V))
4 elvv 5711 . . . . 5 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4sylib 217 . . . 4 (𝐴(𝑅𝑆)𝐵 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
65pm4.71ri 562 . . 3 (𝐴(𝑅𝑆)𝐵 ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
7 19.41vv 1955 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
8 breq2 5114 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
98pm5.32i 576 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
1092exbii 1852 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
116, 7, 103bitr2i 299 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
12 brxrn 36865 . . . . . 6 ((𝐴𝑉𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1312el3v23 36712 . . . . 5 (𝐴𝑉 → (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1413anbi2d 630 . . . 4 (𝐴𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦))))
15 3anass 1096 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1614, 15bitr4di 289 . . 3 (𝐴𝑉 → ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
17162exbidv 1928 . 2 (𝐴𝑉 → (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
1811, 17bitrid 283 1 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  Vcvv 3448  cop 4597   class class class wbr 5110   × cxp 5636  cxrn 36662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fo 6507  df-fv 6509  df-1st 7926  df-2nd 7927  df-xrn 36862
This theorem is referenced by:  dfxrn2  36867  elecxrn  36877  inxpxrn  36886  br1cnvxrn2  36887
  Copyright terms: Public domain W3C validator