| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3451) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3452. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
| Ref | Expression |
|---|---|
| elvd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 |
| This theorem is referenced by: inimasn 6129 predep 6303 dffv3 6854 dmfco 6957 fsnex 7258 2ndconst 8080 curry1 8083 qsel 8769 ralxpmap 8869 domunsn 9091 dif1ennnALT 9222 eqinf 9436 dfacacn 10095 dfac13 10096 intgru 10767 shftfib 15038 rlimdm 15517 mat1scmat 22426 imasnopn 23577 imasncld 23578 imasncls 23579 ustuqtop1 24129 ustuqtop2 24130 ustuqtop3 24131 blval2 24450 mulsval 28012 dfnbgr2 29264 nbuhgr 29270 iunsnima2 32547 gblacfnacd 35089 vonf1owev 35095 fmlasucdisj 35386 opelco3 35762 funpartfv 35933 tailfb 36365 el3v23 38216 eldm4 38263 eldmcnv 38327 ecin0 38334 brcoss3 38424 refressn 38434 disjlem19 38793 pwslnmlem1 43081 rlimdmafv 47178 dfatsnafv2 47253 dfafv23 47254 dfatdmfcoafv2 47255 rlimdmafv2 47259 dfclnbgr2 47824 uspgrsprfo 48136 |
| Copyright terms: Public domain | W3C validator |