![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3478) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3480. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
Ref | Expression |
---|---|
elvd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . 2 ⊢ 𝑥 ∈ V | |
2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
3 | 1, 2 | mpan2 689 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: inimasn 6155 predep 6331 dffv3 6887 dmfco 6987 fsnex 7283 2ndconst 8089 curry1 8092 qsel 8792 ralxpmap 8892 domunsn 9129 dif1ennnALT 9279 eqinf 9481 dfacacn 10138 dfac13 10139 intgru 10811 shftfib 15021 rlimdm 15497 mat1scmat 22048 imasnopn 23201 imasncld 23202 imasncls 23203 ustuqtop1 23753 ustuqtop2 23754 ustuqtop3 23755 blval2 24078 mulsval 27575 dfnbgr2 28632 nbuhgr 28638 iunsnima2 31886 fmlasucdisj 34459 opelco3 34821 funpartfv 34992 tailfb 35354 el3v23 37184 eldm4 37234 eldmcnv 37306 ecin0 37313 brcoss3 37395 refressn 37405 disjlem19 37763 pwslnmlem1 41922 rlimdmafv 45970 dfatsnafv2 46045 dfafv23 46046 dfatdmfcoafv2 46047 rlimdmafv2 46051 uspgrsprfo 46611 |
Copyright terms: Public domain | W3C validator |