| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3454) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3455. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
| Ref | Expression |
|---|---|
| elvd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: inimasn 6132 predep 6306 dffv3 6857 dmfco 6960 fsnex 7261 2ndconst 8083 curry1 8086 qsel 8772 ralxpmap 8872 domunsn 9097 dif1ennnALT 9229 eqinf 9443 dfacacn 10102 dfac13 10103 intgru 10774 shftfib 15045 rlimdm 15524 mat1scmat 22433 imasnopn 23584 imasncld 23585 imasncls 23586 ustuqtop1 24136 ustuqtop2 24137 ustuqtop3 24138 blval2 24457 mulsval 28019 dfnbgr2 29271 nbuhgr 29277 iunsnima2 32554 gblacfnacd 35096 vonf1owev 35102 fmlasucdisj 35393 opelco3 35769 funpartfv 35940 tailfb 36372 el3v23 38223 eldm4 38270 eldmcnv 38334 ecin0 38341 brcoss3 38431 refressn 38441 disjlem19 38800 pwslnmlem1 43088 rlimdmafv 47182 dfatsnafv2 47257 dfafv23 47258 dfatdmfcoafv2 47259 rlimdmafv2 47263 dfclnbgr2 47828 uspgrsprfo 48140 |
| Copyright terms: Public domain | W3C validator |