| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3468) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3469. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
| Ref | Expression |
|---|---|
| elvd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 |
| This theorem is referenced by: inimasn 6150 predep 6324 dffv3 6877 dmfco 6980 fsnex 7281 2ndconst 8105 curry1 8108 qsel 8815 ralxpmap 8915 domunsn 9146 dif1ennnALT 9288 eqinf 9502 dfacacn 10161 dfac13 10162 intgru 10833 shftfib 15096 rlimdm 15572 mat1scmat 22482 imasnopn 23633 imasncld 23634 imasncls 23635 ustuqtop1 24185 ustuqtop2 24186 ustuqtop3 24187 blval2 24506 mulsval 28069 dfnbgr2 29321 nbuhgr 29327 iunsnima2 32604 gblacfnacd 35135 fmlasucdisj 35426 opelco3 35797 funpartfv 35968 tailfb 36400 el3v23 38251 eldm4 38297 eldmcnv 38368 ecin0 38375 brcoss3 38456 refressn 38466 disjlem19 38824 pwslnmlem1 43083 rlimdmafv 47173 dfatsnafv2 47248 dfafv23 47249 dfatdmfcoafv2 47250 rlimdmafv2 47254 dfclnbgr2 47804 uspgrsprfo 48090 |
| Copyright terms: Public domain | W3C validator |