Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3426) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3428. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
Ref | Expression |
---|---|
elvd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . 2 ⊢ 𝑥 ∈ V | |
2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: inimasn 6048 predep 6222 dffv3 6752 dmfco 6846 fsnex 7135 2ndconst 7912 curry1 7915 qsel 8543 ralxpmap 8642 domunsn 8863 dif1enALT 8980 eqinf 9173 dfacacn 9828 dfac13 9829 intgru 10501 shftfib 14711 rlimdm 15188 mat1scmat 21596 imasnopn 22749 imasncld 22750 imasncls 22751 ustuqtop1 23301 ustuqtop2 23302 ustuqtop3 23303 blval2 23624 dfnbgr2 27607 nbuhgr 27613 iunsnima2 30860 fmlasucdisj 33261 opelco3 33655 funpartfv 34174 tailfb 34493 el3v23 36304 eldm4 36336 eldmcnv 36407 ecin0 36411 brcoss3 36483 pwslnmlem1 40833 rlimdmafv 44556 dfatsnafv2 44631 dfafv23 44632 dfatdmfcoafv2 44633 rlimdmafv2 44637 uspgrsprfo 45198 |
Copyright terms: Public domain | W3C validator |