![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3492) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3493. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
Ref | Expression |
---|---|
elvd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: inimasn 6187 predep 6362 dffv3 6916 dmfco 7018 fsnex 7319 2ndconst 8142 curry1 8145 qsel 8854 ralxpmap 8954 domunsn 9193 dif1ennnALT 9339 eqinf 9553 dfacacn 10211 dfac13 10212 intgru 10883 shftfib 15121 rlimdm 15597 mat1scmat 22566 imasnopn 23719 imasncld 23720 imasncls 23721 ustuqtop1 24271 ustuqtop2 24272 ustuqtop3 24273 blval2 24596 mulsval 28153 dfnbgr2 29372 nbuhgr 29378 iunsnima2 32641 gblacfnacd 35075 fmlasucdisj 35367 opelco3 35738 funpartfv 35909 tailfb 36343 el3v23 38182 eldm4 38230 eldmcnv 38301 ecin0 38308 brcoss3 38389 refressn 38399 disjlem19 38757 pwslnmlem1 43049 rlimdmafv 47092 dfatsnafv2 47167 dfafv23 47168 dfatdmfcoafv2 47169 rlimdmafv2 47173 dfclnbgr2 47697 uspgrsprfo 47871 |
Copyright terms: Public domain | W3C validator |