![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3479) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3481. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
Ref | Expression |
---|---|
elvd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . 2 ⊢ 𝑥 ∈ V | |
2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 |
This theorem is referenced by: inimasn 6156 predep 6332 dffv3 6888 dmfco 6988 fsnex 7281 2ndconst 8087 curry1 8090 qsel 8790 ralxpmap 8890 domunsn 9127 dif1ennnALT 9277 eqinf 9479 dfacacn 10136 dfac13 10137 intgru 10809 shftfib 15019 rlimdm 15495 mat1scmat 22041 imasnopn 23194 imasncld 23195 imasncls 23196 ustuqtop1 23746 ustuqtop2 23747 ustuqtop3 23748 blval2 24071 mulsval 27565 dfnbgr2 28594 nbuhgr 28600 iunsnima2 31848 fmlasucdisj 34390 opelco3 34746 funpartfv 34917 tailfb 35262 el3v23 37092 eldm4 37142 eldmcnv 37214 ecin0 37221 brcoss3 37303 refressn 37313 disjlem19 37671 pwslnmlem1 41834 rlimdmafv 45885 dfatsnafv2 45960 dfafv23 45961 dfatdmfcoafv2 45962 rlimdmafv2 45966 uspgrsprfo 46526 |
Copyright terms: Public domain | W3C validator |