| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3440) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3441. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
| Ref | Expression |
|---|---|
| elvd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: inimasn 6103 predep 6277 dffv3 6818 dmfco 6918 fsnex 7217 2ndconst 8031 curry1 8034 qsel 8720 ralxpmap 8820 domunsn 9040 dif1ennnALT 9161 eqinf 9369 dfacacn 10030 dfac13 10031 intgru 10702 shftfib 14976 rlimdm 15455 mat1scmat 22452 imasnopn 23603 imasncld 23604 imasncls 23605 ustuqtop1 24154 ustuqtop2 24155 ustuqtop3 24156 blval2 24475 mulsval 28046 dfnbgr2 29313 nbuhgr 29319 iunsnima2 32597 gblacfnacd 35134 vonf1owev 35140 fmlasucdisj 35431 opelco3 35807 funpartfv 35978 tailfb 36410 el3v23 38261 eldm4 38308 eldmcnv 38372 ecin0 38379 brcoss3 38469 refressn 38479 disjlem19 38838 pwslnmlem1 43124 rlimdmafv 47207 dfatsnafv2 47282 dfafv23 47283 dfatdmfcoafv2 47284 rlimdmafv2 47288 dfclnbgr2 47853 uspgrsprfo 48178 |
| Copyright terms: Public domain | W3C validator |