![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3482) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3483. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
Ref | Expression |
---|---|
elvd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . 2 ⊢ 𝑥 ∈ V | |
2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 |
This theorem is referenced by: inimasn 6178 predep 6353 dffv3 6903 dmfco 7005 fsnex 7303 2ndconst 8125 curry1 8128 qsel 8835 ralxpmap 8935 domunsn 9166 dif1ennnALT 9309 eqinf 9522 dfacacn 10180 dfac13 10181 intgru 10852 shftfib 15108 rlimdm 15584 mat1scmat 22561 imasnopn 23714 imasncld 23715 imasncls 23716 ustuqtop1 24266 ustuqtop2 24267 ustuqtop3 24268 blval2 24591 mulsval 28150 dfnbgr2 29369 nbuhgr 29375 iunsnima2 32639 gblacfnacd 35092 fmlasucdisj 35384 opelco3 35756 funpartfv 35927 tailfb 36360 el3v23 38209 eldm4 38256 eldmcnv 38327 ecin0 38334 brcoss3 38415 refressn 38425 disjlem19 38783 pwslnmlem1 43081 rlimdmafv 47127 dfatsnafv2 47202 dfafv23 47203 dfatdmfcoafv2 47204 rlimdmafv2 47208 dfclnbgr2 47748 uspgrsprfo 47992 |
Copyright terms: Public domain | W3C validator |