| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3442) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3443. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
| Ref | Expression |
|---|---|
| elvd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 |
| This theorem is referenced by: inimasn 6109 predep 6282 dffv3 6822 dmfco 6923 fsnex 7224 2ndconst 8041 curry1 8044 qsel 8730 ralxpmap 8830 domunsn 9051 dif1ennnALT 9180 eqinf 9394 dfacacn 10055 dfac13 10056 intgru 10727 shftfib 14997 rlimdm 15476 mat1scmat 22442 imasnopn 23593 imasncld 23594 imasncls 23595 ustuqtop1 24145 ustuqtop2 24146 ustuqtop3 24147 blval2 24466 mulsval 28035 dfnbgr2 29300 nbuhgr 29306 iunsnima2 32580 gblacfnacd 35074 vonf1owev 35080 fmlasucdisj 35371 opelco3 35747 funpartfv 35918 tailfb 36350 el3v23 38201 eldm4 38248 eldmcnv 38312 ecin0 38319 brcoss3 38409 refressn 38419 disjlem19 38778 pwslnmlem1 43065 rlimdmafv 47162 dfatsnafv2 47237 dfafv23 47238 dfatdmfcoafv2 47239 rlimdmafv2 47243 dfclnbgr2 47808 uspgrsprfo 48133 |
| Copyright terms: Public domain | W3C validator |