| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvd | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3441) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3442. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
| Ref | Expression |
|---|---|
| elvd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 |
| This theorem is referenced by: inimasn 6108 predep 6282 dffv3 6824 dmfco 6924 fsnex 7223 2ndconst 8037 curry1 8040 qsel 8726 ralxpmap 8826 domunsn 9047 dif1ennnALT 9168 eqinf 9376 dfacacn 10040 dfac13 10041 intgru 10712 shftfib 14981 rlimdm 15460 mat1scmat 22455 imasnopn 23606 imasncld 23607 imasncls 23608 ustuqtop1 24157 ustuqtop2 24158 ustuqtop3 24159 blval2 24478 mulsval 28049 dfnbgr2 29317 nbuhgr 29323 iunsnima2 32604 gblacfnacd 35167 vonf1owev 35173 fmlasucdisj 35464 opelco3 35840 funpartfv 36010 tailfb 36442 el3v23 38289 eldm4 38333 eldmcnv 38397 ecin0 38404 ecun 38437 ecxrn2 38452 dfpre2 38510 brcoss3 38555 refressn 38565 disjlem19 38919 pwslnmlem1 43209 rlimdmafv 47301 dfatsnafv2 47376 dfafv23 47377 dfatdmfcoafv2 47378 rlimdmafv2 47382 dfclnbgr2 47947 uspgrsprfo 48272 |
| Copyright terms: Public domain | W3C validator |