| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabgw | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using two substitution hypotheses to avoid a disjoint variable condition on 𝑥 and 𝐴. This is to elabg 3646 what sbievw2 2099 is to sbievw 2094. (Contributed by SN, 20-Apr-2024.) |
| Ref | Expression |
|---|---|
| elabgw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| elabgw.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elabgw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | elabgw.2 | . 2 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 3 | df-clab 2709 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | elabgw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | sbievw 2094 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 6 | 3, 5 | bitri 275 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 7 | 1, 2, 6 | vtoclbg 3526 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: elab2gw 3648 |
| Copyright terms: Public domain | W3C validator |