Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elabgw Structured version   Visualization version   GIF version

Theorem elabgw 40165
Description: Membership in a class abstraction, using two substitution hypotheses to avoid a disjoint variable condition on 𝑥 and 𝐴. This is to elabg 3607 what sbievw2 2099 is to sbievw 2095. (Contributed by SN, 20-Apr-2024.)
Hypotheses
Ref Expression
elabgw.1 (𝑥 = 𝑦 → (𝜑𝜓))
elabgw.2 (𝑦 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
elabgw (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜒))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑦   𝜒,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem elabgw
StepHypRef Expression
1 eleq1 2826 . 2 (𝑦 = 𝐴 → (𝑦 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
2 elabgw.2 . 2 (𝑦 = 𝐴 → (𝜓𝜒))
3 df-clab 2716 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 elabgw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
54sbievw 2095 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
63, 5bitri 274 . 2 (𝑦 ∈ {𝑥𝜑} ↔ 𝜓)
71, 2, 6vtoclbg 3507 1 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  [wsb 2067  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  elab2gw  40166
  Copyright terms: Public domain W3C validator