Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 346 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 3510 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-clel 2814 |
This theorem is referenced by: alexeqg 3586 pm13.183 3602 elab6g 3605 sbc8g 3729 sbc2or 3730 sbccow 3744 sbcco 3747 sbc5ALT 3750 sbcie2g 3763 eqsbc1 3770 sbcng 3771 sbcimg 3772 sbcan 3773 sbcor 3774 sbcbig 3775 sbcal 3785 sbcex2 3786 sbcel1v 3792 sbcreu 3814 csbiebg 3870 sbcel12 4348 sbceqg 4349 csbie2df 4380 preq12bg 4790 elintrabg 4899 sbcbr123 5135 inisegn0 6016 fsn2g 7042 funfvima3 7144 elixpsn 8756 ixpsnf1o 8757 domeng 8783 1sdomOLD 9070 rankcf 10579 eldm3 33773 elima4 33795 brsset 34236 brbigcup 34245 elfix2 34251 elfunsg 34263 elsingles 34265 funpartlem 34289 ellines 34499 elhf2g 34523 cover2g 35917 elabgw 40207 sbcrexgOLD 40644 |
Copyright terms: Public domain | W3C validator |