| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: alexeqg 3617 pm13.183 3632 elab6g 3635 elabgw 3644 sbc8g 3761 sbc2or 3762 sbccow 3776 sbcco 3779 sbc5ALT 3782 sbcie2g 3794 eqsbc1 3800 sbcng 3801 sbcimg 3802 sbcan 3803 sbcor 3804 sbcbig 3805 sbcal 3813 sbcex2 3814 sbcel1v 3819 sbcreu 3839 csbiebg 3894 sbcel12 4374 sbceqg 4375 csbie2df 4406 preq12bg 4817 elintrabg 4925 sbcbr123 5161 inisegn0 6069 fsn2g 7110 funfvima3 7210 elixpsn 8910 ixpsnf1o 8911 domeng 8934 1sdomOLD 9196 rankcf 10730 eldm3 35748 elima4 35763 brsset 35877 brbigcup 35886 elfix2 35892 elfunsg 35904 elsingles 35906 funpartlem 35930 ellines 36140 elhf2g 36164 bj-elpwgALT 37042 cover2g 37710 sbcrexgOLD 42773 |
| Copyright terms: Public domain | W3C validator |