Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 3503 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-clel 2817 |
This theorem is referenced by: alexeqg 3581 pm13.183 3598 elab6g 3601 sbc8g 3727 sbc2or 3728 sbccow 3742 sbcco 3745 sbc5ALT 3748 sbcie2g 3761 eqsbc1 3768 sbcng 3769 sbcimg 3770 sbcan 3771 sbcor 3772 sbcbig 3773 sbcal 3784 sbcex2 3785 sbcel1v 3791 sbcreu 3813 csbiebg 3869 sbcel12 4347 sbceqg 4348 csbie2df 4379 elpwgOLD 4545 preq12bg 4789 elintrabg 4897 sbcbr123 5132 inisegn0 6003 fsn2g 7004 funfvima3 7106 elixpsn 8699 ixpsnf1o 8700 domeng 8723 1sdom 8987 rankcf 10517 eldm3 33707 elima4 33729 brsset 34170 brbigcup 34179 elfix2 34185 elfunsg 34197 elsingles 34199 funpartlem 34223 ellines 34433 elhf2g 34457 cover2g 35852 elabgw 40145 sbcrexgOLD 40587 |
Copyright terms: Public domain | W3C validator |