![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: alexeqg 3664 pm13.183 3679 elab6g 3682 elabgw 3692 sbc8g 3812 sbc2or 3813 sbccow 3827 sbcco 3830 sbc5ALT 3833 sbcie2g 3847 eqsbc1 3854 sbcng 3855 sbcimg 3856 sbcan 3857 sbcor 3858 sbcbig 3859 sbcal 3868 sbcex2 3869 sbcel1v 3875 sbcreu 3898 csbiebg 3954 sbcel12 4434 sbceqg 4435 csbie2df 4466 preq12bg 4878 elintrabg 4985 sbcbr123 5220 inisegn0 6128 fsn2g 7172 funfvima3 7273 elixpsn 8995 ixpsnf1o 8996 domeng 9022 1sdomOLD 9312 rankcf 10846 eldm3 35723 elima4 35739 brsset 35853 brbigcup 35862 elfix2 35868 elfunsg 35880 elsingles 35882 funpartlem 35906 ellines 36116 elhf2g 36140 bj-elpwgALT 37020 cover2g 37676 sbcrexgOLD 42741 |
Copyright terms: Public domain | W3C validator |