| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-clel 2804 |
| This theorem is referenced by: alexeqg 3620 pm13.183 3635 elab6g 3638 elabgw 3647 sbc8g 3764 sbc2or 3765 sbccow 3779 sbcco 3782 sbc5ALT 3785 sbcie2g 3797 eqsbc1 3803 sbcng 3804 sbcimg 3805 sbcan 3806 sbcor 3807 sbcbig 3808 sbcal 3816 sbcex2 3817 sbcel1v 3822 sbcreu 3842 csbiebg 3897 sbcel12 4377 sbceqg 4378 csbie2df 4409 preq12bg 4820 elintrabg 4928 sbcbr123 5164 inisegn0 6072 fsn2g 7113 funfvima3 7213 elixpsn 8913 ixpsnf1o 8914 domeng 8937 1sdomOLD 9203 rankcf 10737 eldm3 35755 elima4 35770 brsset 35884 brbigcup 35893 elfix2 35899 elfunsg 35911 elsingles 35913 funpartlem 35937 ellines 36147 elhf2g 36171 bj-elpwgALT 37049 cover2g 37717 sbcrexgOLD 42780 |
| Copyright terms: Public domain | W3C validator |