![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 3554 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-clel 2814 |
This theorem is referenced by: alexeqg 3651 pm13.183 3666 elab6g 3669 elabgw 3679 sbc8g 3799 sbc2or 3800 sbccow 3814 sbcco 3817 sbc5ALT 3820 sbcie2g 3834 eqsbc1 3841 sbcng 3842 sbcimg 3843 sbcan 3844 sbcor 3845 sbcbig 3846 sbcal 3855 sbcex2 3856 sbcel1v 3862 sbcreu 3885 csbiebg 3941 sbcel12 4417 sbceqg 4418 csbie2df 4449 preq12bg 4858 elintrabg 4966 sbcbr123 5202 inisegn0 6119 fsn2g 7158 funfvima3 7256 elixpsn 8976 ixpsnf1o 8977 domeng 9002 1sdomOLD 9283 rankcf 10815 eldm3 35741 elima4 35757 brsset 35871 brbigcup 35880 elfix2 35886 elfunsg 35898 elsingles 35900 funpartlem 35924 ellines 36134 elhf2g 36158 bj-elpwgALT 37037 cover2g 37703 sbcrexgOLD 42773 |
Copyright terms: Public domain | W3C validator |