| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: alexeqg 3606 pm13.183 3621 elab6g 3624 elabgw 3633 sbc8g 3750 sbc2or 3751 sbccow 3765 sbcco 3768 sbc5ALT 3771 sbcie2g 3783 eqsbc1 3789 sbcng 3790 sbcimg 3791 sbcan 3792 sbcor 3793 sbcbig 3794 sbcal 3802 sbcex2 3803 sbcel1v 3808 sbcreu 3828 csbiebg 3883 sbcel12 4362 sbceqg 4363 csbie2df 4394 preq12bg 4804 elintrabg 4911 sbcbr123 5146 inisegn0 6049 fsn2g 7072 funfvima3 7172 elixpsn 8864 ixpsnf1o 8865 domeng 8888 rankcf 10671 eldm3 35738 elima4 35753 brsset 35867 brbigcup 35876 elfix2 35882 elfunsg 35894 elsingles 35896 funpartlem 35920 ellines 36130 elhf2g 36154 bj-elpwgALT 37032 cover2g 37700 sbcrexgOLD 42762 |
| Copyright terms: Public domain | W3C validator |