| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: alexeqg 3601 pm13.183 3616 elab6g 3619 elabgw 3628 sbc8g 3744 sbc2or 3745 sbccow 3759 sbcco 3762 sbc5ALT 3765 sbcie2g 3777 eqsbc1 3783 sbcng 3784 sbcimg 3785 sbcan 3786 sbcor 3787 sbcbig 3788 sbcal 3796 sbcex2 3797 sbcel1v 3802 sbcreu 3822 csbiebg 3877 sbcel12 4358 sbceqg 4359 csbie2df 4390 preq12bg 4802 elintrabg 4909 sbcbr123 5143 inisegn0 6046 fsn2g 7071 funfvima3 7170 elixpsn 8861 ixpsnf1o 8862 domeng 8885 rankcf 10668 eldm3 35805 elima4 35820 brsset 35931 brbigcup 35940 elfix2 35946 elfunsg 35958 elsingles 35960 funpartlem 35986 ellines 36196 elhf2g 36220 bj-elpwgALT 37098 cover2g 37766 sbcrexgOLD 42888 |
| Copyright terms: Public domain | W3C validator |