| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | vtoclg 3517 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: alexeqg 3614 pm13.183 3629 elab6g 3632 elabgw 3641 sbc8g 3758 sbc2or 3759 sbccow 3773 sbcco 3776 sbc5ALT 3779 sbcie2g 3791 eqsbc1 3797 sbcng 3798 sbcimg 3799 sbcan 3800 sbcor 3801 sbcbig 3802 sbcal 3810 sbcex2 3811 sbcel1v 3816 sbcreu 3836 csbiebg 3891 sbcel12 4370 sbceqg 4371 csbie2df 4402 preq12bg 4813 elintrabg 4921 sbcbr123 5156 inisegn0 6058 fsn2g 7092 funfvima3 7192 elixpsn 8887 ixpsnf1o 8888 domeng 8911 1sdomOLD 9172 rankcf 10706 eldm3 35721 elima4 35736 brsset 35850 brbigcup 35859 elfix2 35865 elfunsg 35877 elsingles 35879 funpartlem 35903 ellines 36113 elhf2g 36137 bj-elpwgALT 37015 cover2g 37683 sbcrexgOLD 42746 |
| Copyright terms: Public domain | W3C validator |