| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | vtoclg 3533 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-clel 2809 |
| This theorem is referenced by: alexeqg 3630 pm13.183 3645 elab6g 3648 elabgw 3656 sbc8g 3773 sbc2or 3774 sbccow 3788 sbcco 3791 sbc5ALT 3794 sbcie2g 3806 eqsbc1 3812 sbcng 3813 sbcimg 3814 sbcan 3815 sbcor 3816 sbcbig 3817 sbcal 3825 sbcex2 3826 sbcel1v 3831 sbcreu 3851 csbiebg 3906 sbcel12 4386 sbceqg 4387 csbie2df 4418 preq12bg 4829 elintrabg 4937 sbcbr123 5173 inisegn0 6085 fsn2g 7128 funfvima3 7228 elixpsn 8951 ixpsnf1o 8952 domeng 8977 1sdomOLD 9257 rankcf 10791 eldm3 35778 elima4 35793 brsset 35907 brbigcup 35916 elfix2 35922 elfunsg 35934 elsingles 35936 funpartlem 35960 ellines 36170 elhf2g 36194 bj-elpwgALT 37072 cover2g 37740 sbcrexgOLD 42808 |
| Copyright terms: Public domain | W3C validator |