Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 349 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 3470 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-clel 2811 |
This theorem is referenced by: alexeqg 3547 pm13.183 3564 elab6g 3570 sbc8g 3688 sbc2or 3689 sbccow 3703 sbcco 3706 sbc5ALT 3709 sbcie2g 3721 eqsbc3 3727 sbcng 3728 sbcimg 3729 sbcan 3730 sbcor 3731 sbcbig 3732 sbcal 3742 sbcex2 3743 sbcel1v 3748 sbcreu 3767 csbiebg 3822 sbcel12 4298 sbceqg 4299 csbie2df 4330 elpwgOLD 4495 preq12bg 4739 elintrabg 4849 sbcbr123 5084 inisegn0 5935 fsn2g 6910 funfvima3 7009 elixpsn 8547 ixpsnf1o 8548 domeng 8569 1sdom 8800 rankcf 10277 eldm3 33300 elima4 33322 brsset 33829 brbigcup 33838 elfix2 33844 elfunsg 33856 elsingles 33858 funpartlem 33882 ellines 34092 elhf2g 34116 cover2g 35496 elabgw 39756 sbcrexgOLD 40179 |
Copyright terms: Public domain | W3C validator |