| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2374. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by SN, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | elabgt 3623 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: elab 3631 elab2g 3632 elabd 3633 elab3g 3637 sbcieg 3777 intmin3 4928 elabrexg 7185 finds 7834 elfi 9306 inficl 9318 dffi3 9324 scott0 9788 elgch 10522 nqpr 10914 hashf1lem1 14366 cshword 14702 trclublem 14906 cotrtrclfv 14923 dfiso2 17683 efgcpbllemb 19671 frgpuplem 19688 lspsn 20939 mpfind 22045 pf1ind 22273 eltg 22875 eltg2 22876 islocfin 23435 fbssfi 23755 nosupres 27649 nosupbnd1lem3 27652 nosupbnd1lem5 27654 noinffv 27663 noinfres 27664 noinfbnd1lem3 27667 noinfbnd1lem5 27669 isewlk 29585 elabreximd 32494 abfmpunirn 32638 ellpi 33347 fmlafvel 35452 isfmlasuc 35455 r1peuqusdeg1 35710 poimirlem3 37686 poimirlem25 37708 islshpkrN 39242 sticksstones8 42269 sticksstones9 42270 sticksstones11 42272 sticksstones17 42279 sticksstones18 42280 rhmqusspan 42301 sn-iotalem 42342 setindtrs 43145 frege55lem1c 44036 nzss 44437 afvelrnb 47290 afvelrnb0 47291 dfatco 47383 elsetpreimafvb 47511 isgrim 48009 isgrlim 48109 discsntermlem 49698 basrestermcfolem 49699 setis 49826 |
| Copyright terms: Public domain | W3C validator |