| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2372. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | elabgt 3627 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: elab 3635 elab2g 3636 elabd 3637 elab3g 3641 sbcieg 3781 intmin3 4926 elabrexg 7177 finds 7826 elfi 9297 inficl 9309 dffi3 9315 scott0 9779 elgch 10513 nqpr 10905 hashf1lem1 14362 cshword 14698 trclublem 14902 cotrtrclfv 14919 dfiso2 17679 efgcpbllemb 19668 frgpuplem 19685 lspsn 20936 mpfind 22043 pf1ind 22271 eltg 22873 eltg2 22874 islocfin 23433 fbssfi 23753 nosupres 27647 nosupbnd1lem3 27650 nosupbnd1lem5 27652 noinffv 27661 noinfres 27662 noinfbnd1lem3 27665 noinfbnd1lem5 27667 isewlk 29582 elabreximd 32488 abfmpunirn 32632 ellpi 33336 fmlafvel 35427 isfmlasuc 35430 r1peuqusdeg1 35685 poimirlem3 37669 poimirlem25 37691 islshpkrN 39165 sticksstones8 42192 sticksstones9 42193 sticksstones11 42195 sticksstones17 42202 sticksstones18 42203 rhmqusspan 42224 sn-iotalem 42260 setindtrs 43064 frege55lem1c 43955 nzss 44356 afvelrnb 47200 afvelrnb0 47201 dfatco 47293 elsetpreimafvb 47421 isgrim 47919 isgrlim 48019 discsntermlem 49608 basrestermcfolem 49609 setis 49736 |
| Copyright terms: Public domain | W3C validator |