| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2377. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab6g 3653 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
| 2 | elabg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | pm5.74i 271 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
| 4 | 3 | albii 1819 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
| 5 | 19.23v 1942 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 6 | 4, 5 | bitri 275 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 7 | elisset 2817 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 8 | pm5.5 361 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
| 10 | 6, 9 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 11 | 1, 10 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: elab 3663 elab2g 3664 elabd 3665 elab3g 3669 sbcieg 3810 intmin3 4957 elabrexg 7240 finds 7897 elfi 9430 inficl 9442 dffi3 9448 scott0 9905 elgch 10641 nqpr 11033 hashf1lem1 14478 cshword 14814 trclublem 15019 cotrtrclfv 15036 dfiso2 17790 efgcpbllemb 19741 frgpuplem 19758 lspsn 20964 mpfind 22070 pf1ind 22298 eltg 22900 eltg2 22901 islocfin 23460 fbssfi 23780 nosupres 27676 nosupbnd1lem3 27679 nosupbnd1lem5 27681 noinffv 27690 noinfres 27691 noinfbnd1lem3 27694 noinfbnd1lem5 27696 isewlk 29587 elabreximd 32496 abfmpunirn 32635 ellpi 33393 fmlafvel 35412 isfmlasuc 35415 r1peuqusdeg1 35670 poimirlem3 37652 poimirlem25 37674 islshpkrN 39143 sticksstones8 42171 sticksstones9 42172 sticksstones11 42174 sticksstones17 42181 sticksstones18 42182 rhmqusspan 42203 sn-iotalem 42239 setindtrs 43016 frege55lem1c 43907 nzss 44308 afvelrnb 47159 afvelrnb0 47160 dfatco 47252 elsetpreimafvb 47365 isgrim 47862 isgrlim 47961 discsntermlem 49414 basrestermcfolem 49415 setis 49529 |
| Copyright terms: Public domain | W3C validator |