| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2370. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | elabgt 3638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: elab 3646 elab2g 3647 elabd 3648 elab3g 3652 sbcieg 3793 intmin3 4940 elabrexg 7217 finds 7872 elfi 9364 inficl 9376 dffi3 9382 scott0 9839 elgch 10575 nqpr 10967 hashf1lem1 14420 cshword 14756 trclublem 14961 cotrtrclfv 14978 dfiso2 17734 efgcpbllemb 19685 frgpuplem 19702 lspsn 20908 mpfind 22014 pf1ind 22242 eltg 22844 eltg2 22845 islocfin 23404 fbssfi 23724 nosupres 27619 nosupbnd1lem3 27622 nosupbnd1lem5 27624 noinffv 27633 noinfres 27634 noinfbnd1lem3 27637 noinfbnd1lem5 27639 isewlk 29530 elabreximd 32439 abfmpunirn 32576 ellpi 33344 fmlafvel 35372 isfmlasuc 35375 r1peuqusdeg1 35630 poimirlem3 37617 poimirlem25 37639 islshpkrN 39113 sticksstones8 42141 sticksstones9 42142 sticksstones11 42144 sticksstones17 42151 sticksstones18 42152 rhmqusspan 42173 sn-iotalem 42209 setindtrs 43014 frege55lem1c 43905 nzss 44306 afvelrnb 47164 afvelrnb0 47165 dfatco 47257 elsetpreimafvb 47385 isgrim 47882 isgrlim 47981 discsntermlem 49559 basrestermcfolem 49560 setis 49687 |
| Copyright terms: Public domain | W3C validator |