![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2380. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 5-Oct-2024.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab6g 3682 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
2 | elabg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 271 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
4 | 3 | albii 1817 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
5 | 19.23v 1941 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
6 | 4, 5 | bitri 275 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
7 | elisset 2826 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
8 | pm5.5 361 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
10 | 6, 9 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
11 | 1, 10 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: elab 3694 elab2g 3696 elabd 3697 elab3g 3701 sbcieg 3845 intmin3 5000 elabrexg 7280 finds 7936 elfi 9482 inficl 9494 dffi3 9500 scott0 9955 elgch 10691 nqpr 11083 hashf1lem1 14504 cshword 14839 trclublem 15044 cotrtrclfv 15061 dfiso2 17833 efgcpbllemb 19797 frgpuplem 19814 lspsn 21023 mpfind 22154 pf1ind 22380 eltg 22985 eltg2 22986 islocfin 23546 fbssfi 23866 nosupres 27770 nosupbnd1lem3 27773 nosupbnd1lem5 27775 noinffv 27784 noinfres 27785 noinfbnd1lem3 27788 noinfbnd1lem5 27790 isewlk 29638 elabreximd 32538 abfmpunirn 32670 ellpi 33366 fmlafvel 35353 isfmlasuc 35356 r1peuqusdeg1 35611 poimirlem3 37583 poimirlem25 37605 islshpkrN 39076 sticksstones8 42110 sticksstones9 42111 sticksstones11 42113 sticksstones17 42120 sticksstones18 42121 rhmqusspan 42142 sn-iotalem 42214 setindtrs 42982 frege55lem1c 43878 nzss 44286 afvelrnb 47078 afvelrnb0 47079 dfatco 47171 elsetpreimafvb 47258 isgrim 47752 isgrlim 47806 setis 48790 |
Copyright terms: Public domain | W3C validator |