| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2370. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | elabgt 3629 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: elab 3637 elab2g 3638 elabd 3639 elab3g 3643 sbcieg 3784 intmin3 4929 elabrexg 7183 finds 7836 elfi 9322 inficl 9334 dffi3 9340 scott0 9801 elgch 10535 nqpr 10927 hashf1lem1 14380 cshword 14715 trclublem 14920 cotrtrclfv 14937 dfiso2 17697 efgcpbllemb 19652 frgpuplem 19669 lspsn 20923 mpfind 22030 pf1ind 22258 eltg 22860 eltg2 22861 islocfin 23420 fbssfi 23740 nosupres 27635 nosupbnd1lem3 27638 nosupbnd1lem5 27640 noinffv 27649 noinfres 27650 noinfbnd1lem3 27653 noinfbnd1lem5 27655 isewlk 29566 elabreximd 32472 abfmpunirn 32609 ellpi 33320 fmlafvel 35357 isfmlasuc 35360 r1peuqusdeg1 35615 poimirlem3 37602 poimirlem25 37624 islshpkrN 39098 sticksstones8 42126 sticksstones9 42127 sticksstones11 42129 sticksstones17 42136 sticksstones18 42137 rhmqusspan 42158 sn-iotalem 42194 setindtrs 42998 frege55lem1c 43889 nzss 44290 afvelrnb 47148 afvelrnb0 47149 dfatco 47241 elsetpreimafvb 47369 isgrim 47867 isgrlim 47967 discsntermlem 49556 basrestermcfolem 49557 setis 49684 |
| Copyright terms: Public domain | W3C validator |