Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2372. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by SN, 5-Oct-2024.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab6g 3593 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
2 | elabg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 270 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
4 | 3 | albii 1823 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
5 | 19.23v 1946 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
6 | 4, 5 | bitri 274 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
7 | elisset 2820 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
8 | pm5.5 361 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
10 | 6, 9 | syl5bb 282 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
11 | 1, 10 | bitrd 278 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: elab 3602 elab2g 3604 elabd 3605 elab3g 3609 sbcieg 3751 intmin3 4904 finds 7719 elfi 9102 inficl 9114 dffi3 9120 scott0 9575 elgch 10309 nqpr 10701 hashf1lem1 14096 hashf1lem1OLD 14097 cshword 14432 trclublem 14634 cotrtrclfv 14651 dfiso2 17401 efgcpbllemb 19276 frgpuplem 19293 lspsn 20179 mpfind 21227 pf1ind 21431 eltg 22015 eltg2 22016 islocfin 22576 fbssfi 22896 isewlk 27872 elabreximd 30756 abfmpunirn 30891 fmlafvel 33247 isfmlasuc 33250 nosupres 33837 nosupbnd1lem3 33840 nosupbnd1lem5 33842 noinffv 33851 noinfres 33852 noinfbnd1lem3 33855 noinfbnd1lem5 33857 poimirlem3 35707 poimirlem25 35729 islshpkrN 37061 sticksstones8 40037 sticksstones9 40038 sticksstones11 40040 sticksstones17 40047 sticksstones18 40048 sn-iotalem 40117 mhphf 40208 setindtrs 40763 frege55lem1c 41413 nzss 41824 elabrexg 42478 afvelrnb 44542 afvelrnb0 44543 dfatco 44635 elsetpreimafvb 44724 setis 46289 |
Copyright terms: Public domain | W3C validator |