Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2372. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 5-Oct-2024.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab6g 3600 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
2 | elabg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 270 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
4 | 3 | albii 1822 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
5 | 19.23v 1945 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
6 | 4, 5 | bitri 274 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
7 | elisset 2820 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
8 | pm5.5 362 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
10 | 6, 9 | bitrid 282 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
11 | 1, 10 | bitrd 278 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: elab 3609 elab2g 3611 elabd 3612 elab3g 3616 sbcieg 3756 intmin3 4907 finds 7745 elfi 9172 inficl 9184 dffi3 9190 scott0 9644 elgch 10378 nqpr 10770 hashf1lem1 14168 hashf1lem1OLD 14169 cshword 14504 trclublem 14706 cotrtrclfv 14723 dfiso2 17484 efgcpbllemb 19361 frgpuplem 19378 lspsn 20264 mpfind 21317 pf1ind 21521 eltg 22107 eltg2 22108 islocfin 22668 fbssfi 22988 isewlk 27969 elabreximd 30855 abfmpunirn 30989 fmlafvel 33347 isfmlasuc 33350 nosupres 33910 nosupbnd1lem3 33913 nosupbnd1lem5 33915 noinffv 33924 noinfres 33925 noinfbnd1lem3 33928 noinfbnd1lem5 33930 poimirlem3 35780 poimirlem25 35802 islshpkrN 37134 sticksstones8 40109 sticksstones9 40110 sticksstones11 40112 sticksstones17 40119 sticksstones18 40120 sn-iotalem 40189 mhphf 40285 setindtrs 40847 frege55lem1c 41524 nzss 41935 elabrexg 42589 afvelrnb 44655 afvelrnb0 44656 dfatco 44748 elsetpreimafvb 44836 setis 46403 |
Copyright terms: Public domain | W3C validator |