![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2372. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2138, ax-11 2155, ax-12 2172. (Revised by SN, 5-Oct-2024.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab6g 3660 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
2 | elabg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 271 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
4 | 3 | albii 1822 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
5 | 19.23v 1946 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
6 | 4, 5 | bitri 275 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
7 | elisset 2816 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
8 | pm5.5 362 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
10 | 6, 9 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
11 | 1, 10 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 |
This theorem is referenced by: elab 3669 elab2g 3671 elabd 3672 elab3g 3676 sbcieg 3818 intmin3 4981 finds 7889 elfi 9408 inficl 9420 dffi3 9426 scott0 9881 elgch 10617 nqpr 11009 hashf1lem1 14415 hashf1lem1OLD 14416 cshword 14741 trclublem 14942 cotrtrclfv 14959 dfiso2 17719 efgcpbllemb 19623 frgpuplem 19640 lspsn 20613 mpfind 21670 pf1ind 21874 eltg 22460 eltg2 22461 islocfin 23021 fbssfi 23341 nosupres 27210 nosupbnd1lem3 27213 nosupbnd1lem5 27215 noinffv 27224 noinfres 27225 noinfbnd1lem3 27228 noinfbnd1lem5 27230 isewlk 28859 elabreximd 31747 abfmpunirn 31877 fmlafvel 34376 isfmlasuc 34379 poimirlem3 36491 poimirlem25 36513 islshpkrN 37990 sticksstones8 40969 sticksstones9 40970 sticksstones11 40972 sticksstones17 40979 sticksstones18 40980 sn-iotalem 41038 setindtrs 41764 frege55lem1c 42667 nzss 43076 elabrexg 43728 afvelrnb 45871 afvelrnb0 45872 dfatco 45964 elsetpreimafvb 46052 setis 47743 |
Copyright terms: Public domain | W3C validator |