| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabg | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2371. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | elabgt 3641 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: elab 3649 elab2g 3650 elabd 3651 elab3g 3655 sbcieg 3796 intmin3 4943 elabrexg 7220 finds 7875 elfi 9371 inficl 9383 dffi3 9389 scott0 9846 elgch 10582 nqpr 10974 hashf1lem1 14427 cshword 14763 trclublem 14968 cotrtrclfv 14985 dfiso2 17741 efgcpbllemb 19692 frgpuplem 19709 lspsn 20915 mpfind 22021 pf1ind 22249 eltg 22851 eltg2 22852 islocfin 23411 fbssfi 23731 nosupres 27626 nosupbnd1lem3 27629 nosupbnd1lem5 27631 noinffv 27640 noinfres 27641 noinfbnd1lem3 27644 noinfbnd1lem5 27646 isewlk 29537 elabreximd 32446 abfmpunirn 32583 ellpi 33351 fmlafvel 35379 isfmlasuc 35382 r1peuqusdeg1 35637 poimirlem3 37624 poimirlem25 37646 islshpkrN 39120 sticksstones8 42148 sticksstones9 42149 sticksstones11 42151 sticksstones17 42158 sticksstones18 42159 rhmqusspan 42180 sn-iotalem 42216 setindtrs 43021 frege55lem1c 43912 nzss 44313 afvelrnb 47168 afvelrnb0 47169 dfatco 47261 elsetpreimafvb 47389 isgrim 47886 isgrlim 47985 discsntermlem 49563 basrestermcfolem 49564 setis 49691 |
| Copyright terms: Public domain | W3C validator |