MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabg Structured version   Visualization version   GIF version

Theorem elabg 3607
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2372. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 5-Oct-2024.)
Hypothesis
Ref Expression
elabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabg (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elabg
StepHypRef Expression
1 elab6g 3600 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2 elabg.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
32pm5.74i 270 . . . . 5 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
43albii 1822 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
5 19.23v 1945 . . . 4 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
64, 5bitri 274 . . 3 (∀𝑥(𝑥 = 𝐴𝜑) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
7 elisset 2820 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
8 pm5.5 362 . . . 4 (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
97, 8syl 17 . . 3 (𝐴𝑉 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
106, 9bitrid 282 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
111, 10bitrd 278 1 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  elab  3609  elab2g  3611  elabd  3612  elab3g  3616  sbcieg  3756  intmin3  4907  finds  7745  elfi  9172  inficl  9184  dffi3  9190  scott0  9644  elgch  10378  nqpr  10770  hashf1lem1  14168  hashf1lem1OLD  14169  cshword  14504  trclublem  14706  cotrtrclfv  14723  dfiso2  17484  efgcpbllemb  19361  frgpuplem  19378  lspsn  20264  mpfind  21317  pf1ind  21521  eltg  22107  eltg2  22108  islocfin  22668  fbssfi  22988  isewlk  27969  elabreximd  30855  abfmpunirn  30989  fmlafvel  33347  isfmlasuc  33350  nosupres  33910  nosupbnd1lem3  33913  nosupbnd1lem5  33915  noinffv  33924  noinfres  33925  noinfbnd1lem3  33928  noinfbnd1lem5  33930  poimirlem3  35780  poimirlem25  35802  islshpkrN  37134  sticksstones8  40109  sticksstones9  40110  sticksstones11  40112  sticksstones17  40119  sticksstones18  40120  sn-iotalem  40189  mhphf  40285  setindtrs  40847  frege55lem1c  41524  nzss  41935  elabrexg  42589  afvelrnb  44655  afvelrnb0  44656  dfatco  44748  elsetpreimafvb  44836  setis  46403
  Copyright terms: Public domain W3C validator