MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elex22 Structured version   Visualization version   GIF version

Theorem elex22 3434
Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
elex22 ((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elex22
StepHypRef Expression
1 eleq1a 2901 . . . 4 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
2 eleq1a 2901 . . . 4 (𝐴𝐶 → (𝑥 = 𝐴𝑥𝐶))
31, 2anim12ii 613 . . 3 ((𝐴𝐵𝐴𝐶) → (𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶)))
43alrimiv 2028 . 2 ((𝐴𝐵𝐴𝐶) → ∀𝑥(𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶)))
5 elisset 3432 . . 3 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
65adantr 474 . 2 ((𝐴𝐵𝐴𝐶) → ∃𝑥 𝑥 = 𝐴)
7 exim 1934 . 2 (∀𝑥(𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥𝐵𝑥𝐶)))
84, 6, 7sylc 65 1 ((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wal 1656   = wceq 1658  wex 1880  wcel 2166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-12 2222  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-tru 1662  df-ex 1881  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-v 3416
This theorem is referenced by:  en3lplem1VD  39897
  Copyright terms: Public domain W3C validator