![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elex22 | Structured version Visualization version GIF version |
Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
elex22 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2834 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | eleq1a 2834 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐶)) | |
3 | 1, 2 | anim12ii 618 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | 3 | alrimiv 1925 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
5 | elissetv 2820 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥 𝑥 = 𝐴) |
7 | exim 1831 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
8 | 4, 6, 7 | sylc 65 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: en3lplem1VD 44841 |
Copyright terms: Public domain | W3C validator |