Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elex22 | Structured version Visualization version GIF version |
Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
elex22 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2834 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | eleq1a 2834 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐶)) | |
3 | 1, 2 | anim12ii 618 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | 3 | alrimiv 1930 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
5 | elisset 2820 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥 𝑥 = 𝐴) |
7 | exim 1836 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
8 | 4, 6, 7 | sylc 65 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: en3lplem1VD 42463 |
Copyright terms: Public domain | W3C validator |