Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lplem1VD Structured version   Visualization version   GIF version

Theorem en3lplem1VD 40716
 Description: Virtual deduction proof of en3lplem1 8921. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lplem1VD ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem en3lplem1VD
StepHypRef Expression
1 idn1 40447 . . . . . . 7 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   (𝐴𝐵𝐵𝐶𝐶𝐴)   )
2 simp3 1131 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
31, 2e1a 40500 . . . . . 6 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   𝐶𝐴   )
4 tpid3g 4615 . . . . . 6 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
53, 4e1a 40500 . . . . 5 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   𝐶 ∈ {𝐴, 𝐵, 𝐶}   )
6 idn2 40486 . . . . . 6 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   𝑥 = 𝐴   )
7 eleq2 2871 . . . . . . 7 (𝑥 = 𝐴 → (𝐶𝑥𝐶𝐴))
87biimprd 249 . . . . . 6 (𝑥 = 𝐴 → (𝐶𝐴𝐶𝑥))
96, 3, 8e21 40603 . . . . 5 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   𝐶𝑥   )
10 pm3.2 470 . . . . 5 (𝐶 ∈ {𝐴, 𝐵, 𝐶} → (𝐶𝑥 → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝑥)))
115, 9, 10e12 40597 . . . 4 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝑥)   )
12 elex22 3460 . . . 4 ((𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝑥) → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
1311, 12e2 40504 . . 3 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)   )
1413in2 40478 . 2 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))   )
1514in1 40444 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1080   = wceq 1522  ∃wex 1761   ∈ wcel 2081  {ctp 4476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-v 3439  df-un 3864  df-sn 4473  df-pr 4475  df-tp 4477  df-vd1 40443  df-vd2 40451 This theorem is referenced by:  en3lplem2VD  40717
 Copyright terms: Public domain W3C validator