Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lplem1VD Structured version   Visualization version   GIF version

Theorem en3lplem1VD 43604
Description: Virtual deduction proof of en3lplem1 9607. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lplem1VD ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem en3lplem1VD
StepHypRef Expression
1 idn1 43335 . . . . . . 7 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   (𝐴𝐵𝐵𝐶𝐶𝐴)   )
2 simp3 1139 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
31, 2e1a 43388 . . . . . 6 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   𝐶𝐴   )
4 tpid3g 4777 . . . . . 6 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
53, 4e1a 43388 . . . . 5 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   𝐶 ∈ {𝐴, 𝐵, 𝐶}   )
6 idn2 43374 . . . . . 6 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   𝑥 = 𝐴   )
7 eleq2 2823 . . . . . . 7 (𝑥 = 𝐴 → (𝐶𝑥𝐶𝐴))
87biimprd 247 . . . . . 6 (𝑥 = 𝐴 → (𝐶𝐴𝐶𝑥))
96, 3, 8e21 43491 . . . . 5 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   𝐶𝑥   )
10 pm3.2 471 . . . . 5 (𝐶 ∈ {𝐴, 𝐵, 𝐶} → (𝐶𝑥 → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝑥)))
115, 9, 10e12 43485 . . . 4 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝑥)   )
12 elex22 3497 . . . 4 ((𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝑥) → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
1311, 12e2 43392 . . 3 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ,   𝑥 = 𝐴   ▶   𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)   )
1413in2 43366 . 2 (   (𝐴𝐵𝐵𝐶𝐶𝐴)   ▶   (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))   )
1514in1 43332 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {ctp 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-sn 4630  df-pr 4632  df-tp 4634  df-vd1 43331  df-vd2 43339
This theorem is referenced by:  en3lplem2VD  43605
  Copyright terms: Public domain W3C validator