![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prcnel | Structured version Visualization version GIF version |
Description: A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.) |
Ref | Expression |
---|---|
prcnel | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3491 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | 1 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2104 Vcvv 3472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 |
This theorem is referenced by: suppco 8193 fundmge2nop0 14457 fun2dmnop0 14459 vtxval 28527 iedgval 28528 fmlafvel 34674 isinf2 36589 eliin2f 44094 dfatprc 46136 afvprc 46150 afv2prc 46232 |
Copyright terms: Public domain | W3C validator |