Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prcnel | Structured version Visualization version GIF version |
Description: A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.) |
Ref | Expression |
---|---|
prcnel | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3455 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | 1 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2104 Vcvv 3437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 |
This theorem is referenced by: suppco 8053 fundmge2nop0 14255 fun2dmnop0 14257 vtxval 27419 iedgval 27420 fmlafvel 33396 isinf2 35624 eliin2f 42867 dfatprc 44866 afvprc 44880 afv2prc 44962 |
Copyright terms: Public domain | W3C validator |