MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcnel Structured version   Visualization version   GIF version

Theorem prcnel 3497
Description: A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.)
Assertion
Ref Expression
prcnel 𝐴 ∈ V → ¬ 𝐴𝑉)

Proof of Theorem prcnel
StepHypRef Expression
1 elex 3492 . 2 (𝐴𝑉𝐴 ∈ V)
21con3i 154 1 𝐴 ∈ V → ¬ 𝐴𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2105  Vcvv 3473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475
This theorem is referenced by:  suppco  8197  fundmge2nop0  14460  fun2dmnop0  14462  vtxval  28693  iedgval  28694  fmlafvel  34840  isinf2  36750  eliin2f  44255  dfatprc  46297  afvprc  46311  afv2prc  46393
  Copyright terms: Public domain W3C validator