MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcnel Structured version   Visualization version   GIF version

Theorem prcnel 3486
Description: A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.)
Assertion
Ref Expression
prcnel 𝐴 ∈ V → ¬ 𝐴𝑉)

Proof of Theorem prcnel
StepHypRef Expression
1 elex 3480 . 2 (𝐴𝑉𝐴 ∈ V)
21con3i 154 1 𝐴 ∈ V → ¬ 𝐴𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  Vcvv 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461
This theorem is referenced by:  suppco  8205  fundmge2nop0  14520  fun2dmnop0  14522  vtxval  28979  iedgval  28980  fmlafvel  35407  isinf2  37423  eliin2f  45128  dfatprc  47159  afvprc  47173  afv2prc  47255
  Copyright terms: Public domain W3C validator