MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcnel Structured version   Visualization version   GIF version

Theorem prcnel 3462
Description: A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.)
Assertion
Ref Expression
prcnel 𝐴 ∈ V → ¬ 𝐴𝑉)

Proof of Theorem prcnel
StepHypRef Expression
1 elex 3457 . 2 (𝐴𝑉𝐴 ∈ V)
21con3i 154 1 𝐴 ∈ V → ¬ 𝐴𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438
This theorem is referenced by:  suppco  8136  fundmge2nop0  14409  fun2dmnop0  14411  vtxval  28978  iedgval  28979  fmlafvel  35429  isinf2  37449  eliin2f  45211  dfatprc  47240  afvprc  47254  afv2prc  47336
  Copyright terms: Public domain W3C validator