![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prcnel | Structured version Visualization version GIF version |
Description: A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.) |
Ref | Expression |
---|---|
prcnel | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | 1 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 |
This theorem is referenced by: suppco 8197 fundmge2nop0 14460 fun2dmnop0 14462 vtxval 28693 iedgval 28694 fmlafvel 34840 isinf2 36750 eliin2f 44255 dfatprc 46297 afvprc 46311 afv2prc 46393 |
Copyright terms: Public domain | W3C validator |