MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcnel Structured version   Visualization version   GIF version

Theorem prcnel 3476
Description: A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.)
Assertion
Ref Expression
prcnel 𝐴 ∈ V → ¬ 𝐴𝑉)

Proof of Theorem prcnel
StepHypRef Expression
1 elex 3471 . 2 (𝐴𝑉𝐴 ∈ V)
21con3i 154 1 𝐴 ∈ V → ¬ 𝐴𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452
This theorem is referenced by:  suppco  8188  fundmge2nop0  14474  fun2dmnop0  14476  vtxval  28934  iedgval  28935  fmlafvel  35379  isinf2  37400  eliin2f  45105  dfatprc  47135  afvprc  47149  afv2prc  47231
  Copyright terms: Public domain W3C validator